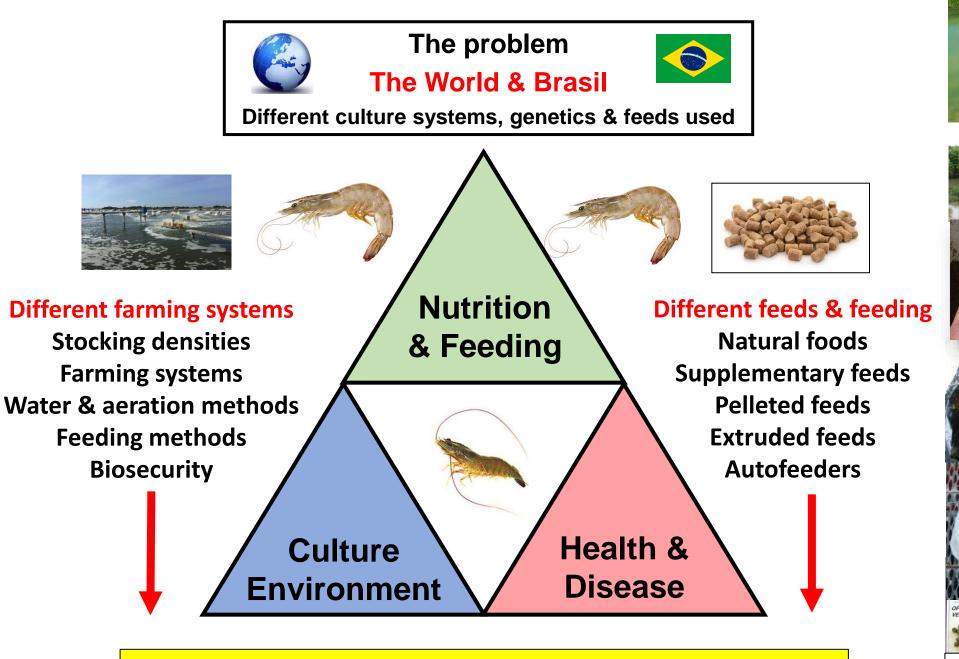
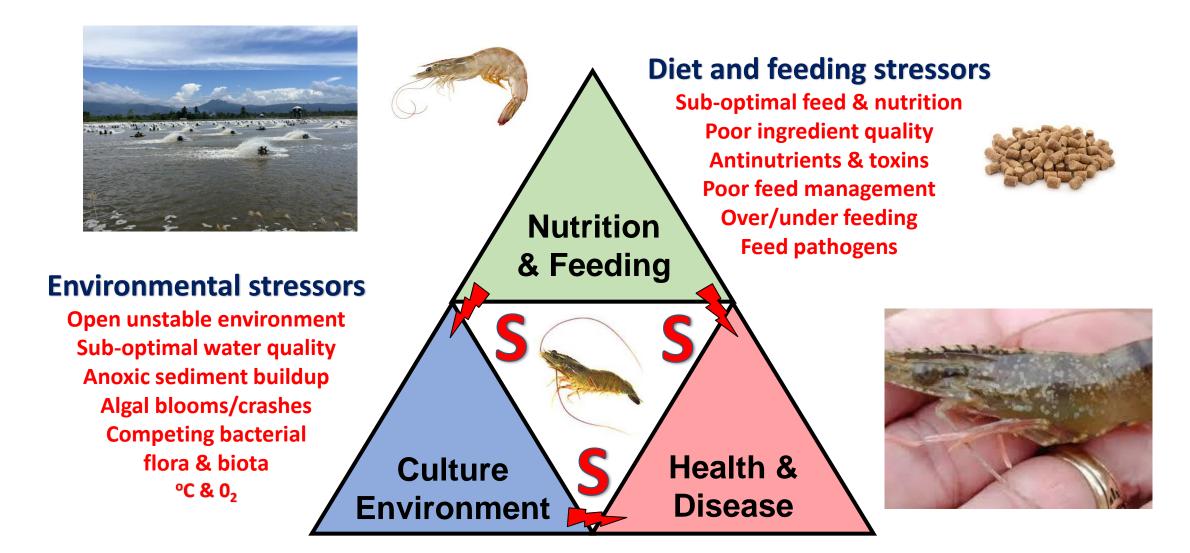
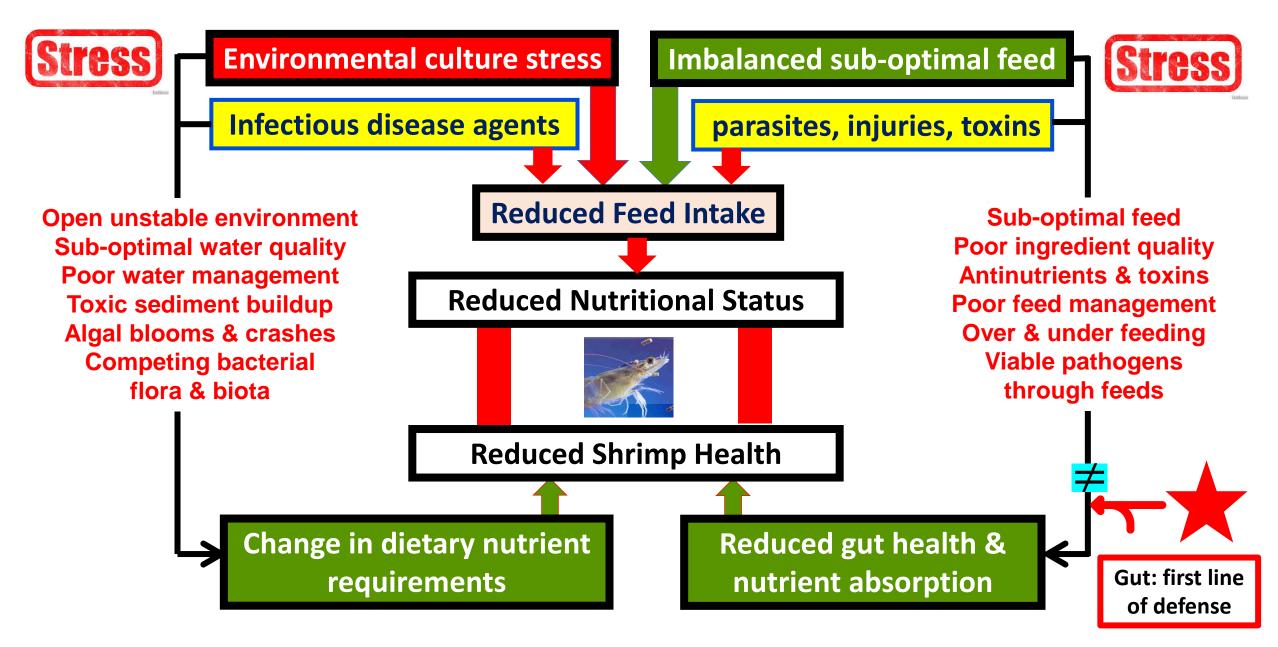


Shrimp nutrition & health: a holistic approach

Albert G.J. Tacon


Aquahana LLC, Kailua HI 96734 USA agjtacon@aol.com





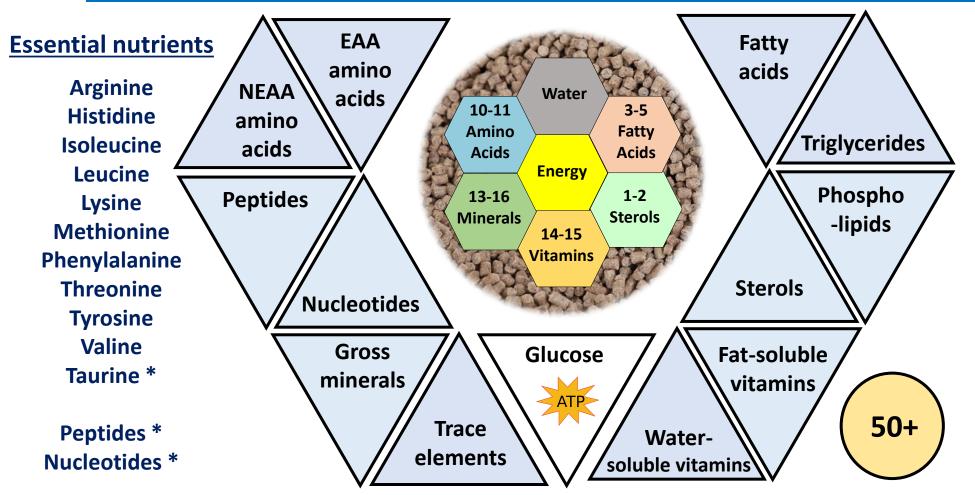
Bottom line for farmer: US \$ /kg production & intended market

Another problem: Need to reduce Stress & Disease during the culture cycle

Need for strict environmental control & biosecurity to minimise Stress

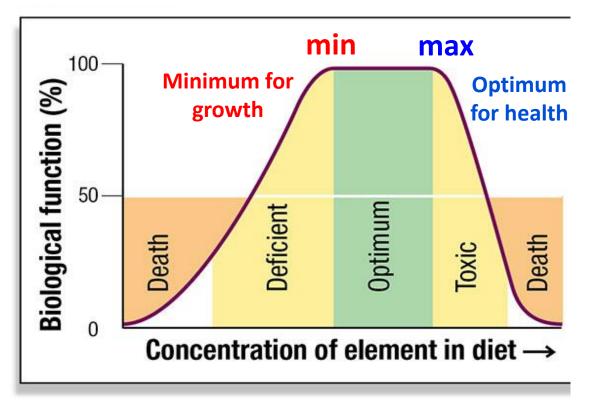
Nutrition & Health Interactions

(modified after Tacon & Tran, 2022)


Shrimp do not have a dietary requirement for Protein, Lipid, Fiber or Ash but have a requirement for the 50 + biologically available essential nutrients contained in the feed

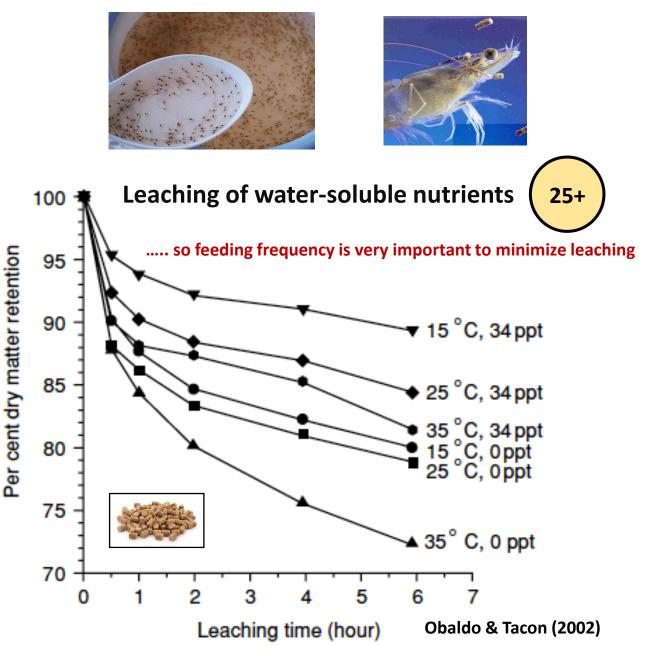
Shrimp Feed Formulation: 50+ Essential Nutrients in biologically available form

Essential nutrients


18:2n-6, 18:3n-3, 20:4n-6 22:5n-3, 22:6n-3 Cholesterol Phospholipids *

Vitamin A, C, D, E, K Vitamin B₁ B₂ B₅ B₆ B₇ B₁₂ Choline, Inositol, Folic acid, Carotenoids/astaxanthin *

Calcium, Phosphorus, Potassium, Sodium, Iron, Magnesium, Manganese, Zinc, Copper, Cobalt, Iodine, Selenium, Chromium, Molybdenum, Silicon *



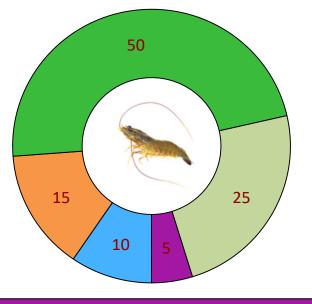
Dietary nutrient requirements

More is better when the level of the nutrient in the diet is in the deficier range but the key point is that more is <u>not</u> better when the level is in the optimum range and is indeed harmful thereafter.

Specific shrimp issues

Increasing use of plant proteins, meals & oils in shrimp feeds

Including:

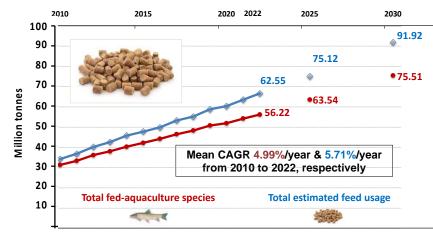

Oilseeds & legumes: Soybean meal, soybean protein concentrate, soybean protein isolate, fermented soybean meal, rapeseed meal, canola protein concentrate, canola meal, mustard seed meal, sunflower seed meal, cottonseed meal, peanut meal, Pea protein meals, Lupin kernel meal;

Cereals: Vital wheat gluten, Wheat gluten meal, Corn gluten meal, Corn protein concentrates, Fermented corn protein meals, Distillers dried grains with solubles (DDGS), Barley protein meals, Rice protein concentrate;

Tubers/fruitPotatoproteinmeals,Palmkernel meal, Copra meal, Fermented coprameal

Aquatic meals & oils	<mark>5-10%</mark>
Fishmeal & fish oil	5-10
Squid meal, crustacean meal	3-10
Seaweed meals & products	1-5
Cultured microbial biomass	1-5
Terrestrial animal proteins & oils	5-15%
Poultry by-product meals	5-10
Porcine by-products	2-5
Ruminant by-products	2-5
Terrestrial invertebrates	1-5
Terrestrial plant proteins & oils	<mark>25-50%</mark>
Terrestrial plant proteins & oils Oilseed protein by-products	25-50% 10-30
Oilseed protein by-products	10-30
Oilseed protein by-products Cereal protein by-products	10-30 5-15
Oilseed protein by-products Cereal protein by-products Pulse protein by-products	10-30 5-15 5-15
Oilseed protein by-products Cereal protein by-products Pulse protein by-products Other plant proteins	10-30 5-15 5-15 5-15
Oilseed protein by-products Cereal protein by-products Pulse protein by-products Other plant proteins Other plant meals & fillers	10-30 5-15 5-15 5-15 15-25%
Oilseed protein by-products Cereal protein by-products Pulse protein by-products Other plant proteins Other plant meals & fillers Cereal meals & by-products	10-30 5-15 5-15 5-15 15-25% 15-50

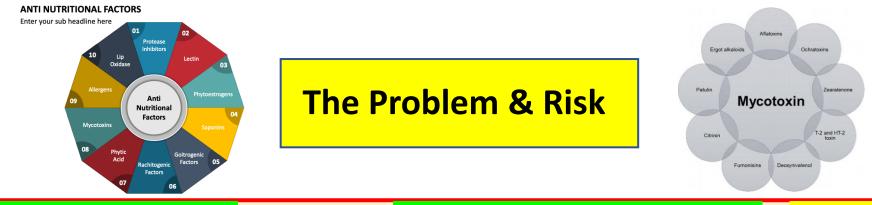
Ingredients commonly used in feeds for PENAEID SHRIMP SPECIES


Feed additives	0-5%
Vitamins, antioxidants, pigments, emulsifiers	
Minerals, trace elements, chelated minerals	
Amino acids, nucleotides, feeding attractants	
Enzymes, gut modifiers, prebiotics, probiotics, acidifi	ers
Immune enhancers, anti-fungal, anti-viral, anti-paras	itical
Cholesterol, binders, pigments, growth promoters	

Oilseeds: World Markets and Trade

Major protein meals	2023/24 (Mt)
Meal, Copra	1.98
Meal, Cottonseed	15.13
Meal, Fish	4.91
Meal, Palm kernel	10.74
Meal, Peanut	7.43
Meal, Rapeseed	48.68
Meal, Soybean	258.93
Meal, Sunflowerseed	23.05
Total	370.84 Mt

Figure 13. Total global fed-aquaculture species production and estimated aquaculture feed usage from 2010 to 2022, and estimates for 2025 & 2030 (Fed-species production calculated from FishStatJ release 4.03.06: FAO, 2024)



Feed Tonnage by Sector

Volume growth in feed tonnage came predominantly

Sector	2022 feed tonnage (MMT*)			
Broiler	385.04			
Pig	320.80			
Layer	170.88			
Dairy	126.23			
Beef	117.49			
Aqua	52.09			
Pet	34.96			
Equine	7.98			
Totals*	1,286.58			

All Plant ingredients may contain Anti-Nutritional Factors (ANF) & Mycotoxins, which unless removed or inactivated can have a negative effect on growth, gut health, nutrient digestion, disease susceptibility & health

ANFs are secondary metabolites found in plants, which generally serve protective functions against predation & for maximize plant survival

Algae - 1.2 billion years; Flowering plants/insects 400 million; Humans 1-2 million

- **Proteins**: protease inhibitors, phytohemagglutinins, toxic amino acids, food allergens
- Glycosides: goitrogens, cyanogens, saponins, estrogens
- Phenols: gossypol, tannins
- Miscellaneous: phytic acid, anti-vitamins, anti-enzymes, toxic fatty acids & NSP

Endogenous anti-nutritional factors within plant feed ingredients

(Source: Tacon, Metian & Hasan, 2009)

<u>Cereals</u>		
Rice	1, 2, 5, 8, 13 (5)	and the second second
Wheat	1, 2, 5, 8, 11, 18, 22 (7)	
Corn/maize	1, 5, 8, 19 (4)	
<u>Oilseeds</u>		
Rapeseed	1 (T), 3, 5, 7, 28, 29 (6)	
Indian mustard	1 (T), 3, 5, 7, 13, 28, 29 (7)	wew.shutterstock.nen 107308046
Soybean	1 (T, E, C, Pa, In), 2, 3, 5, 6, 8, 11,	, 12, 14, 16, 17, 27, 28 (13)

1: Protease inhibitors (T-trypsin, C-chymotrypsin, In-insect proteases, Pa-papain, E-elastin), 2: Phyto-haemagglutinins, 3: Glucosinolates, 4: Cyanogens, 5: Phytic acid, 6: Saponins, 7: Tannins, 8: Estrogenic factors, 9: Lathyrogens, 10: Gossypol, 11: Flatulence factor, 12: Anti-vitamin E factor, 13: Anti-thiamine factor, 14: Anti-vitamin A factor, 15: Anti-pyridoxine factor, 16: Anti-vitamin D factor, 17: Anti-vitamin B₁₂ factor 18: Amylase inhibitor, 19: Invertase inhibitor, 20: Arginase inhibitor, 21: Cholinesterase inhibitor, 22: Dihydroxyphenylalanine, 23: Mimosine, 24: Cyclopropenoic acid, 25: Alkaloids, 26: Canavanine, 27: Allergens, 28: Non-starch polysaccharides (oligosaccharides), 29: Erucic acid

Endogenous anti-nutritional factors within plant feed ingredients

(Source: Tacon, Metian & Hasan, 2009)

<u>Cereals</u>		and the first the second	That's why we cook our foods
Rice	1, 2, 5, 8, 13 (5)	and the second	
Wheat	1, 2, 5, 8, 11, 18, 22 (7)		
Corn/maize	1, 5, 8, 19 (4)		
<u>Oilseeds</u>			
Rapeseed	1 (T), 3, 5, 7, 28, 29 (6)		
Indian mustard	1 (T), 3, 5, 7, 13, 28, 29 (7)	wew.shutterstock.nen 107306046	
Soybean	1 (T, E, C, Pa, In), 2, 3, 5, 6, 8, 11	, 12, 14, 16, 17, 27, 28 (13)	

1: Protease inhibitors (T-trypsin, C-chymotrypsin, In-insect proteases, Pa-papain, E-elastin), 2: Phyto-haemagglutinins, 3: Glucosinolates, 4: Cyanogens, 5: Phytic acid, 6: Saponins, 7: Tannins, 8: Estrogenic factors, 9: Lathyrogens, 10: Gossypol, 11: Flatulence factor, 12: Anti-vitamin E factor, 13: Anti-thiamine factor, 14: Anti-vitamin A factor, 15: Anti-pyridoxine factor, 16: Anti-vitamin D factor, **17**: Anti-vitamin B₁₂ factor **18**: Amylase inhibitor, **19**: Invertase inhibitor, **20**: Arginase inhibitor, **21**: Cholinesterase inhibitor, 22: Dihydroxyphenylalanine, 23: Mimosine, 24: Cyclopropenoic acid, 25: Alkaloids, 26: Canavanine, 27: Allergens, 28: Non-starch polysaccharides (oligosaccharides), 29: **Erucic acid**

ANFs - commercial methods used for their removal and/or reduction

ANFs	Feed source	Treatment methods used
Amylase inhibitors	Cereal grains, peas	Heat
Fibre	All plants	Dehulling
Goitrogens	Rapeseed	Heat, Iodine supplementation
Gossypol	Cottonseed	Non-polar extraction, iron supplementation
Protease inhibitors	Cereal grains, legumes	Heat, methionine supplementation
Lectins	All plant seeds	Heat
Lipase inhibitors	Cereal grains, beans	Heat
Oligosaccharides	Legumes	Alcohol/aqueous extraction
Phytic acid	All plants	Mineral supplementation
Phytoestrogens	Beans	Alcohol/non-polar extraction
Phytosterols	Legumes	Alcohol/non-polar extraction
Quinolozidine alkaloids	Lupins	Aqueous extraction
Saponins	Legumes	Alcohol extraction
Tannins	Rapeseed, beans, sorghum	Dehulling, autoclaving

For all ANFs listed, levels may be reduced further by fermentation or use of dietary exogenous enzymes that specifically inactivate the compound, or through the use of selective breeding techniques/genetic modification

MYCOTOXINS – THE HIDDEN THREAT

The greatest risk to fish/crustacean health is from the use of ingredients/aquafeeds contaminated with mycotoxins; the risk being highest under warm/humid conditions which favor the growth of the mycotoxin producing filamentous fungi

EUROPEAN ASSOCIATION OF FISH PATHOLOGISTS / 5M BOOK SERIES

NUTRITIONAL FISH AND SHRIMP PATHOLOGY

A HANDBOOK

Nutritional disorders

Proteins & amino acids

Lipids & fatty acids

Vitamin imbalances

Feed contaminants

Reduced disease

resistance, health &

Anti-nutritional factors

Reduced growth & FCR

Minerals & trace

elements

Usually results in

survival

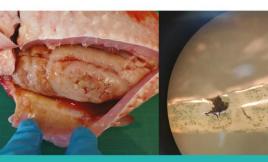
Related to

Pathology signs

EXTERNAL

- Animal behavior
- Body shape & size
- Eyes, fins & gills
- Lesions & hemorrhage
- Skin color & pigmentation
- Feed intake & FCR

INTERNAL


- Blood & hematology
- Gut structure & function

- Heart

 \triangleright

- Immunity & disease resistance
- Liver/hepatopancreas
- Muscle S & F
- Skeletal & bone abnormality
- Kidney/spleen S & F

ALBERT G.J. TACON AND LOC TRAN

2022

Example of major pathology signs related to nutrition

Major pathology sign

Reduced disease resistance & immune function

NUTRITIONAL FISH AND SHRIMP PATHOLOGY

LBERT G.J. TACON AND LOC TRAN

Nutrient

- Essential amino acid deficiency: Arginine, Isoleucine, Methionine, Phenylalanine, Taurine, Threonine, Tryptophan & Valine
- Essential fatty acid deficiency
- Mineral deficiency: Copper, Chromium
- Vitamin deficiency: Vitamin A, Vitamin E, Vitamin C, Thiamine, Riboflavin, Pantothenic acid, Nicotinic acid, Folic acid, Choline
- Oxidized lipids
- Mycotoxin contamination

ADVENTITIOUS FACTORS MYCOTOXINS – THE HIDDEN THREAT

The greatest risk to fish/shrimp health is from the use of ingredients/aquafeeds contaminated with mycotoxins; the risk being highest under warm/humid conditions which favour the growth of the mycotoxin producing filamentous fungi

Major mycotoxins of concern to human health, food & feed sector, include:

Aflatoxin (AFL): major metabolites - AFB₁, AFB₂, AFG₁, AFG₂; Fumonisin (FUM): major metabolites - Fumonisin B1, B2, B3; Ochratoxin A (OTA): major metabolite - Ochratoxin A Trichothecenes (TCT): major metabolite - T-2 toxin, Deoxynivalenol (DON), Nivalenol; Zearalenone (ZEN): major metabolite - Zearalenone.

Mycotoxins are toxic secondary metabolites produced by saprophytic filamentous fungi or molds; to date over 500 different mycotoxins have been categorized as toxic; their reported adverse effects in humans may include necrosis, hepatitis, hemorrhage, gynecomastia with testicular atrophy, neurological disorders, cancer and death

Acetoxyscirpenediol	Acetyldeoxynivalenol	Acetylneosolaniol	Acetyl T-2 toxin	Aflatoxin	Aflatrem	Altenuic acid
Alternariol	Austdiol	Austamide	Austocystin	Avenacein + 1	Beauvericin + 2	Bentenolide
Brevianamide	Butenolide	Calonectrin	Chaetoglobosin	Citrinin	Citreoviridin	Cochliodinol
Crotocin	Cytochalasin E	Cyclopiazonic acid	Deacetylcalonectrin	Deoxynivalenol diacetate	Deoxynivalenol monoacetate	Diacetoxyscirpenol
Destruxin B	Enniatins	Fructigenin + 1	Fumagilin	Fumonisin B1	Fusaric acid	Fusarin
Gliotoxin	HT-2 toxin	Ipomeanine	Islanditoxin	Lateritin + 1	Lycomarasmin + 1	Malformin
Maltoryzine	Monoiliformin	Monoacetoxyscirpenol	Neosolaniol	Nivalenol	NT-1 toxin	NT-2 toxin
Ochratoxin	Oxalic acid	Patulin	Penicillic acid	Penitrem	Roridin E	Rubratoxin
Rubroskyrin	Rubrosulphin	Rugulosin	Sambucynin + 1	Satratoxins F G H	Scirpentriol	Slaframine
Sterigmatocystin	T-1 toxin	T-2 toxin	Triacetoxyscirpendiol	Trichodermin	Trichothecin	Trichoverrins
Trichoverrols	Tryptoquivalene	Verrucarin	Verruculogen	Viopurpurin	Viomellein	Viriditoxin
Xanthocillin	Yavanicin+1	Zearalenone	Source: https://www.mold-help.org/mycotoxin list			

Fusarium sp	Alternaria sp	Monographella sp	Chaetoglobosin sp	Stachybotrys sp
Aspergillus sp	Myrothecium sp	Acremonium sp	Rhizoctonia sp	Trichoderma sp
Penicillium sp	Trichothecium sp	Trichophyton sp	Eurotium sp	

Wide diversity of mycotoxins produced by molds: over 500 mycotoxins or metabolites to date

Assessing the risk using Alltech 37+ lab data for 2023: mycotoxins in feed ingredients used in shrimp diets

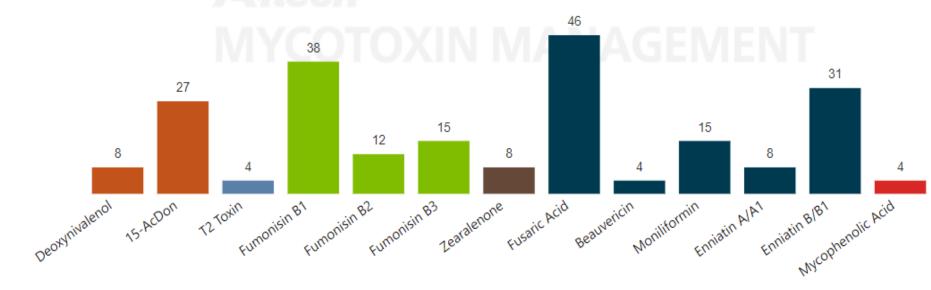
Koletsi, Feed and Additives (August 2023)

Corn					
Mycotoxin group	Average	Maximum	Occurrence %		
Emerging Mycotoxins	254.4	4,751	93.9		
Fusaric Acid	123.0	2,074	84.6		
Fumonisins	1,866.6	26,085	74.9		
Type B Trichothecenes	626.6	8,409	69.6		
Zearalenone	30.0	1,734	25.5		
Type A Trichothecenes	12.2	713	19.4		

Mycotoxin group	Average	Maximum	Occurrence %		
Emerging Mycotoxins	70.0	282	100		
Type B Trichothecenes	708.5	7,034	82.6		
Fusaric Acid	158.4	2,023	60.9		
Fumonisins	520.3	3,379	43.5		
Type A Trichothecenes	4.4	44	26.1		
Ergot Toxins	16.1	203	26.1		
Zearalenone	21.2	377	17.4		
Other Penicillium My- cotoxins	5.9	56	13.0		

"Common" mycotoxins

- Fumonisins
- DON
- Zearalenone


Emerging mycotoxins & fusaric acid

- no detectable with routine methods
- no regulatory limits
- no scientific information

Mycotoxin Group	Median	Average	Maximum	Occurrence, %
Emerging Mycotoxins	0.8	6.8	106	53.8
Fusaric Acid	0.0	28.8	581	46.2
Fumonisins	0.0	63.8	498	38.5
Type B Trichothecenes	0.0	113.9	2,788	26.9
Zearalenone	0.0	60.9	1,518	7.7
Type A Trichothecenes	0.0	0.4	10	3.8
Other Penicillium Mycotoxins	0.0	3.0	77	3.8

Occurrence (%) of all individual mycotoxins analyzed by Allech 37+

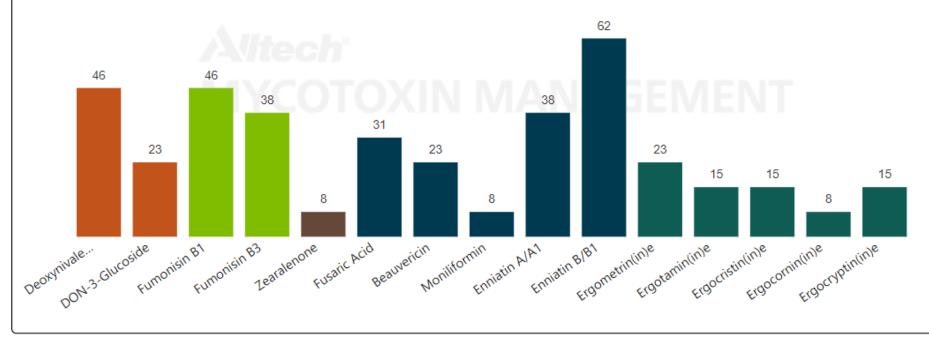
Soybean meal South America

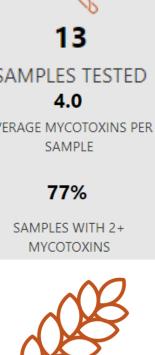
26 SAMPLES TESTED

2.2 AVERAGE MYCOTOXINS PER SAMPLE

65%

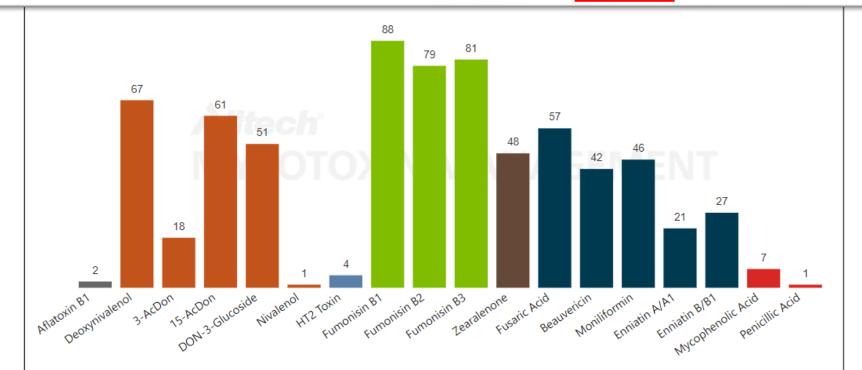
SAMPLES WITH 2+ MYCOTOXINS


*January- September 2024


South America

Mycotoxin Group	Median	Average	Maximum	Occurrence, %
Emerging Mycotoxins	2.3	58.5	311	69.2
Type B Trichothecenes	1.0	60.5	359	53.8
Fumonisins	0.7	34.8	146	5 <mark>3.</mark> 8
Fusaric Acid	0.0	3.3	16	30.8
Ergot Toxins	0.0	114.1	771	23.1
Zearalenone	0.0	31.3	407	7.7

Mycotoxin concentrations (ppb), occurrence (%) and total risk (REQ) of selected samples


Occurrence (%) of all individual mycotoxins analyzed by Allech 37+

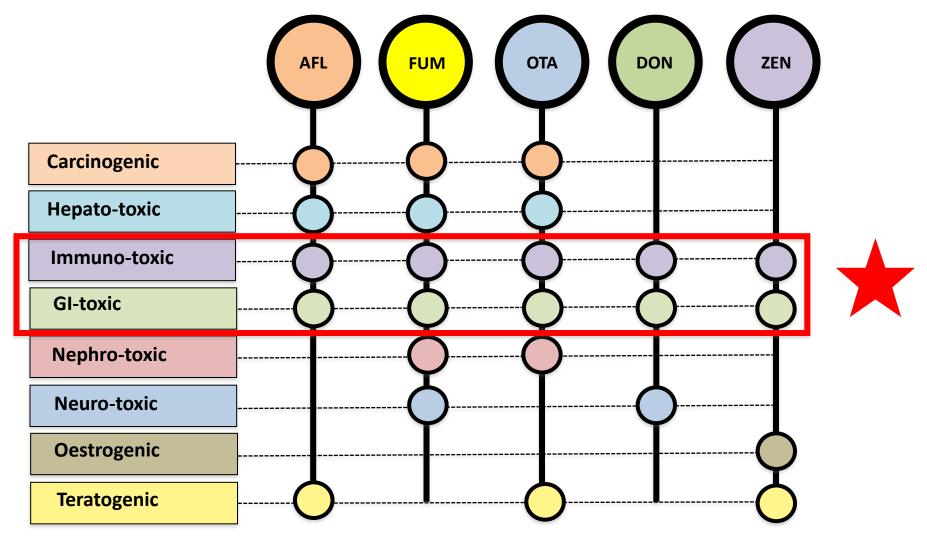
*January- September 2024

Mycotoxin Group	Median	Average	Maximum	Occurrence, %
Fumonisins	1,258.4	1,831.2	9,138	91.1
Type B Trichothecenes	2.0	754.2	9,116	80.0
Emerging Mycotoxins	36.3	538.1	13,001	77.8
Fusaric Acid	25.5	85.6	811	56.7
Zearalenone	0.0	28.0	317	47.8
Other Penicillium Mycotoxins	0.0	5.6	450	6.7
Type A Trichothecenes	0.0	1.0	51	4.4
Aflatoxin B1	0.0	0.2	12	2.2
Aflatoxins, Total	0.0	0.2	12	2.2

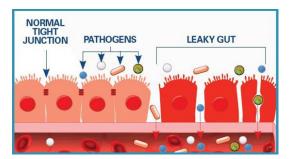
Corn South America

90 SAMPLES TESTED 7.0 AVERAGE MYCOTOXINS PER SAMPLE

94%


SAMPLES WITH 2+ MYCOTOXINS

*January- September 2024



Major reported health effects of aflatoxin (AFL), fumonisin (FUM), ochratoxin A (OTA), deoxynivalenol (DON), and zaralenone (ZEN) in humans and animals (modified after Cinar & Onbasi, 2019)

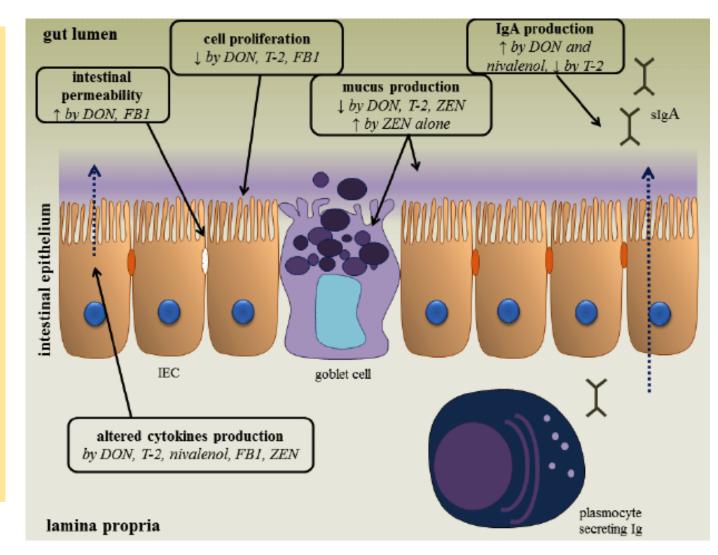
Tacon & Tran (2022)

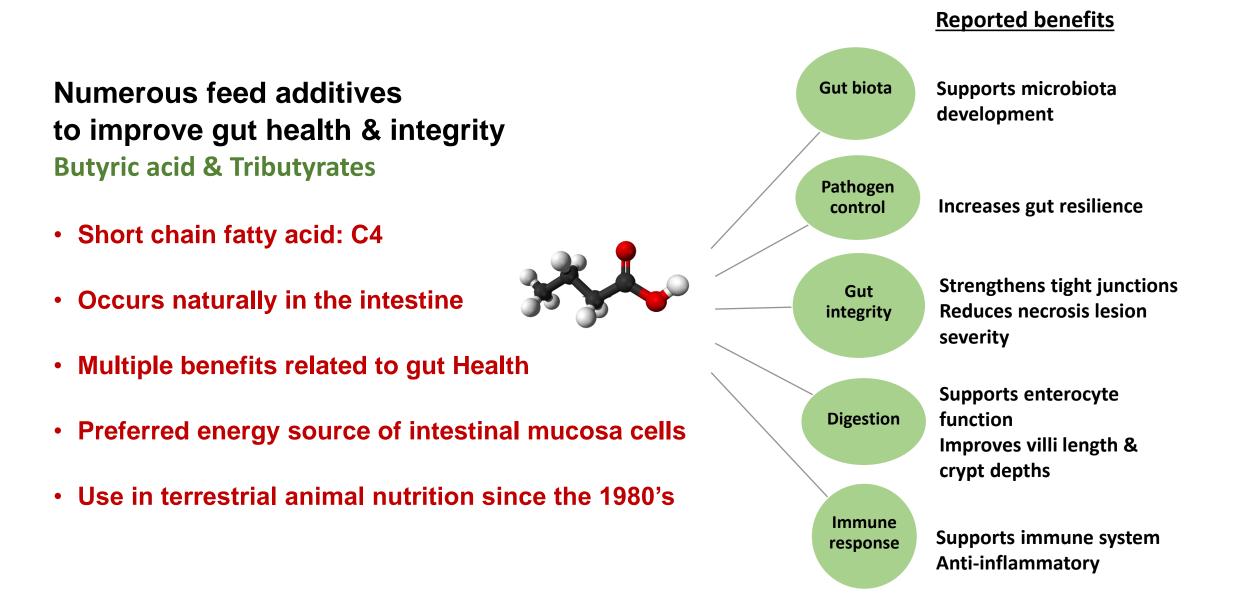
IMPORTANCE OF GUT HEALTH – FIRST LINE OF DEFENSE Leaky Guts – Nutrient Digestibility - Microbiome – Immune Capability

Lectins or phytohemagglutinins: soybean lectins have been shown to bind to the distal intestine, and are believed to be involved in soybean meal-induced enteritis.

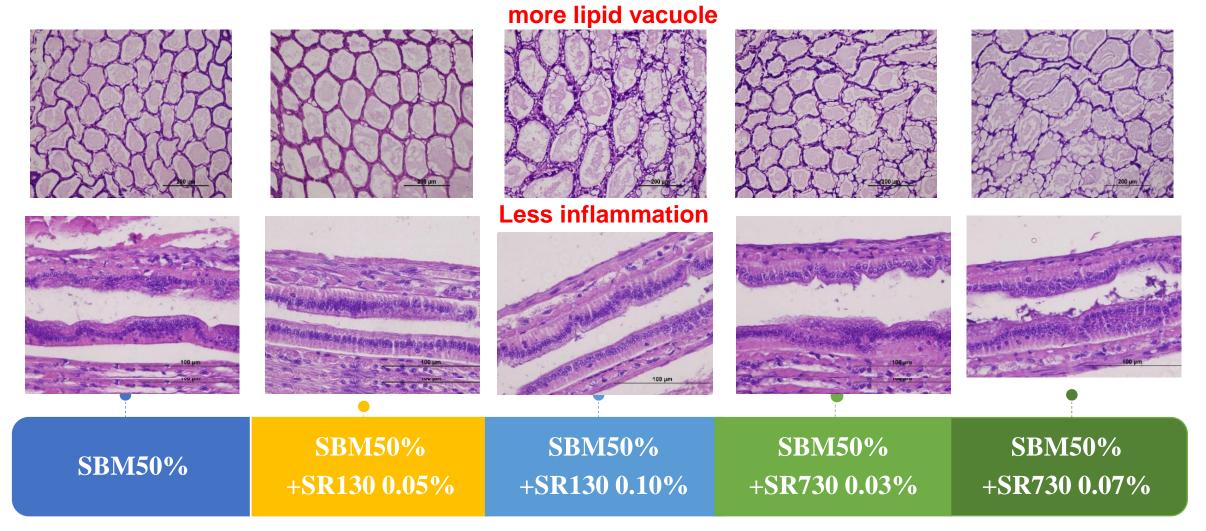
Saponins: soybean saponins reported to increase intestinal epithelial permeability in Atlantic salmon and play key role in soybean-induced enteritis; have the ability of binding to membrane cholesterol - forming holes and allowing the uptake of macromolecules, including allergens, antigens, and/or opportunistic bacteria and their toxins - and also of forming complexes with bile acids and cholesterol during digestion.

Plant allergens: proteins with capability of stimulating antigenic effects or immunological activity, and capability of inducing gastrointestinal hypersensitivity, including intestinal mucosal lesions, specific and non-specific immune responses, and alterations in nutrient digestibility and reduced growth. Soybean glycinin also found to disrupt intestinal structural integrity in grass carp.




IMPORTANCE OF GUT HEALTH – FIRST LINE OF DEFENSE Leaky Guts – Nutrient Digestibility - Microbiome – Immune Capability

The effect of *Fusarium* mycotoxins on the intestinal epithelium.

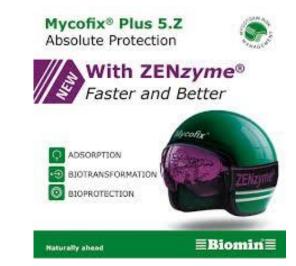

A variety of *Fusarium* mycotoxins alter the different intestinal defense mechanisms including epithelial integrity, cell proliferation, mucus layer, immunoglobulins (Ig) and cytokine production. (IEC: intestinal epithelial cell)

Based on Bouhet, S.; Oswald, I.P. The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. *Vet. Immunol. Immun.* 2005, *108*, 199–209.

Histopathology of Hepatopancreas/Intestine of Pacific White Shrimp at 10 wks

Soughing off hepatopancreas cells / epithelial cells & inflammation of the subcuticular epithelium cells Beneficial effect on hepatopancreas structure/morphology & immune capability – Loc Tran pers comm

Mycotoxin Mitigation Strategies



- Limiting use of lower cost/quality feed ingredients cereal byproduct meals, use of expired ingredients, use of floor sweepings;
- Use of organic acids & feed additives to prevent/limit mold growth in finished feeds propionic acid, sorbic acid, herbs and spices, essential oils, phenolic antioxidants;
- Use of mycotoxin binders to prevent the absorption of mycotoxins clay minerals, bentonites, zeolites, activated charcoal, yeast and yeast cell wall derived products, algae extracts, chitin oligosaccharides, and synthetic polymers;
- Use of microorganisms/dietary enzymes to bio-transform mycotoxins in GI-tract;
- At the farm level store feeds under cool well-ventilated conditions, use on a first-in first-out basis, not subjected to adulteration by top-dressing prior to use, ensure feed bags are not left outdoors (hours) prior to feeding, following good BMPs

Because each mycotoxin is unique and responds uses six mold-specific binders to remove toxins produced by mold from the Gitract

These satisfients have not been invaluated by the Fost and Drug Administration. The groups is not inserted to diagnose, this curs is present any doesail

Altech

2024 Asia Import Risk Analysis

Mycotoxin insights to empower your nutritional strategy

Feed additives with reported health benefits – direct or indirect

Nutrients

Amino acids Peptides Nucleotides Fatty acids Sterols Vitamins Minerals

Additives

Antioxidants Enzymes * Emulsifiers Essential oils Organic acids * Hydrolysates

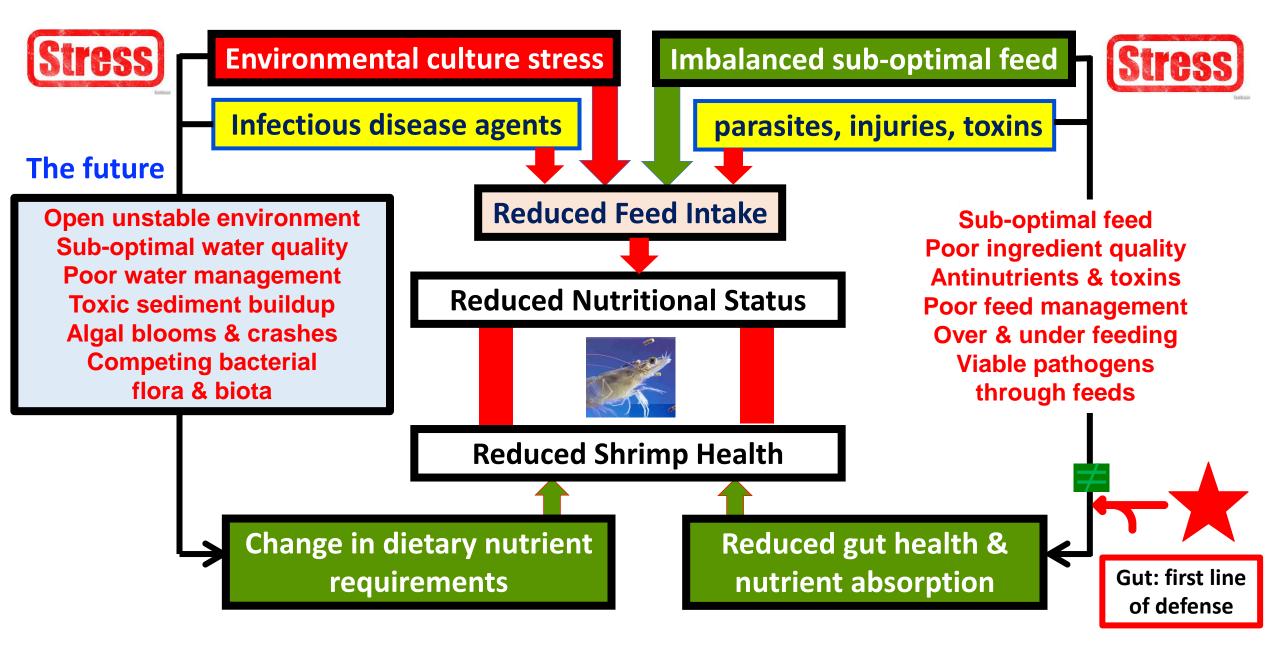
Probiotics Prebiotics Alginates **Beta glucans** Carrageenans Chitosans Nanoparticles Lactoferrin Mannans Peptidoglycan **Phytosterols** Yeast extracts * Zeolites * Activated charcoal * Mycotoxin binders *

Ingredients with functional properties may improve health & survival but their use is not always a panacea to eliminate a disease problem – cost/benefit US \$/tonne

Improving the utilization of feed ingredients

EXOGENOUS MICROBIAL ENZYMES

- Improved nutrient digestibility \succ
- Improving feed efficiency \succ
- Release of trapped nutrients
- **Breakdown of anti-nutritional factors** \succ
- Improved gut health \succ


Cellulase

Reducing environmental impacts (N, P)

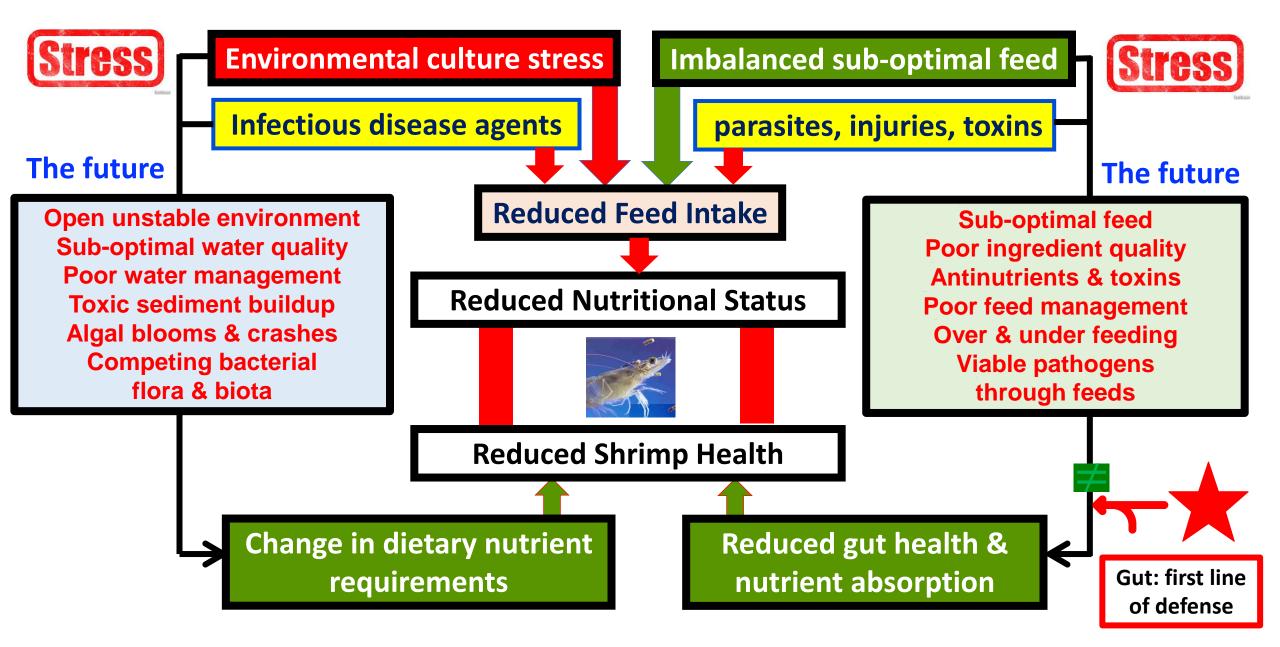
Lipase β – glucanase Amylase Protease Micotoxinase

Nutrition & Health Interactions

(modified after Tacon & Tran, 2022)

Benefits of farming Indoors Biosecurity: pathogen exclusion Environmental control Minimise stress Feeding to satiation 24/7 Out of public eye

The future – full biosecurity, environmental & stress control 24/7


1

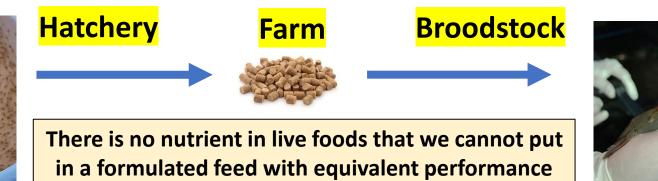
1 1

2.1.11.11.1.1

Fit.t.t

•

Nutrition & Health Interactions


(modified after Tacon & Tran, 2022)

Next generation shrimp feeds

Designed to maximize feed intake, growth & shrimp health through

Maximizing shrimp feeding response, feed intake & growth
Optimizing shrimp disease resistance & immune response capability
Optimizing shrimp stress control & antioxidant defense capability
Maximizing shrimp digestive health & nutrient digestibility
Faster shrimp growth, farm profitability & cycles/year

Albert G.J. Tacon PhD Aquahana LLC Kailua, HI 96734 USA agjtacon@aol.com

