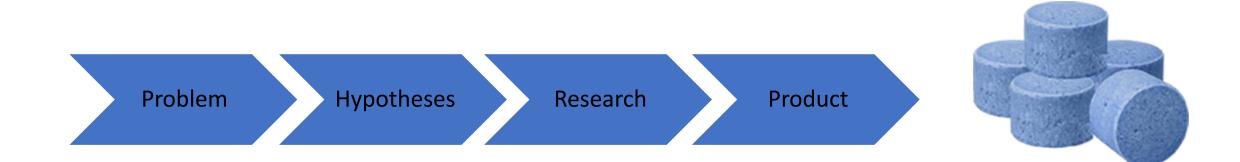
Simple "Solutions" for Aquaculture


Susan E. Knudson Ph.D.

Finding Solutions for Aquaculture

Waste and Sludge

- Feed applied to pond water results in the development of inorganic and organic matter, which contaminates the pond water and pond bottom soil, leading to poor health and productivity of the shrimp.
- Organic matter in the sludge can lead to high concentrations of ammonia, which helps create the perfect environment for pathogenic Vibrio and can cause early mortality syndrome and white feces disease. The combination of Ammonia, Vibrio, mineral deficiencies, and hydrogen sulfide can cause reduced growth and increased mortality, ultimately resulting in less-than-optimal shrimp production.

Hypothesis:

Probiotics Reduce Sludge in Aquaculture

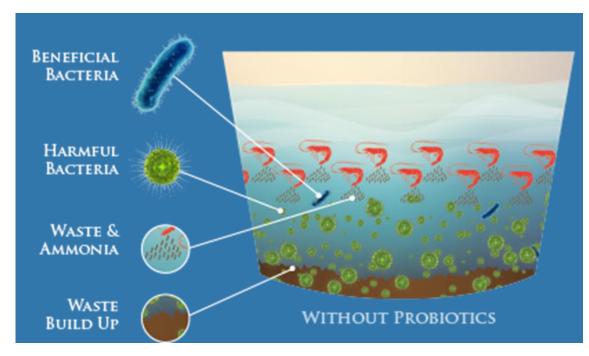
What are Probiotics??

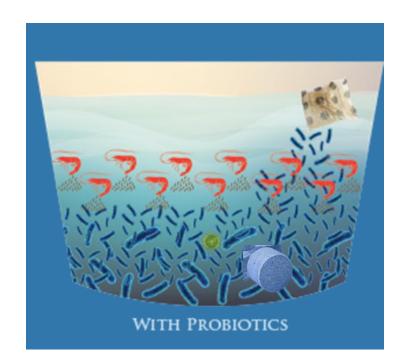
- Probiotics are a combination of beneficial bacteria, enzymes, minerals, and micronutrients on a carbon rich carrier. Probiotics are Important tools to manage the microbial ecology in the aquaculture ponds
- Probiotics are bacteria that have a beneficial effect in aquaculture through:
 - Competitive exclusion
 - Improved FCR/nutrient efficiency
 - Stimulate immunity to increase disease resistance
 - Improved water quality

Probiotics Effect Animal Health

• Directly

- Ammonia
- Nitrite
- Nitrate
- Pathogen Populations
- Bottom Sludge


Indirectly


- Biological Oxygen demand
- Hydrogen Sulfide
- Animal Stress
- Water Exchange
- Use of antibiotics

Competitive Exclusion and the Microbiome

- Probiotic microbes outcompete *Vibrio*, *Pseudomonas*, *Aeromonas*, and other gram-negative microbes for resources and space.
- Enzyme production includes bactericidal and bacteriostatic compounds.
- They eliminate the need for water exchange.

How do Probiotics Work?

- Control of Microbiome
- Improvement of water quality
- Improvement of pond bottoms

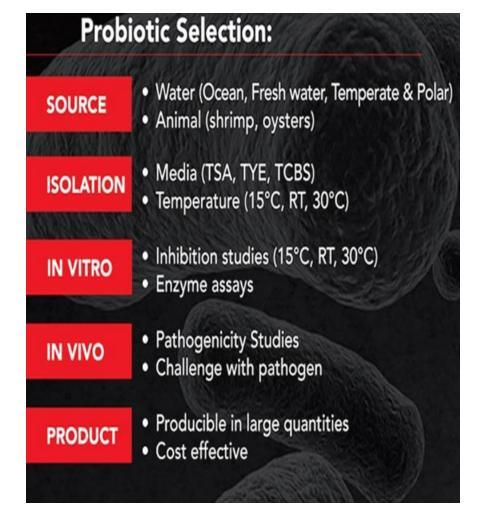
Probiotics that Reduce Sludge

- *Bacillus* species are known to enhance the natural sludge digestion process by breaking down complex organic matter such as ammonia, carbohydrates, or fatty acids.
- Biodegradation of sludge is a multi-step process involving the whole bacterial community with a variety of organisms that produce proteases, cellulase, lipase and amylase.
- Each *Bacillus* strain is unique, so a product designed to incorporate several complimentary strains is an effective approach to wastewater sludge treatment

Research and Development Program

- Keeton is dedicated to making the best possible products. Our mission is to identify microbes with improved efficacy at different salinities, temperatures, pH and against known pathogens.
- Our research and development program goal is to find novel bacteria that are more reactive against emerging strains of aquaculture related pathogens.

- Dr. Susan Knudson, MPH, PHD
- Senior Research Scientist



Mining for New Microbes

Mining for microbes where they will be used provides isolates that will grow well where needed.

Samples were collected from the ocean, estuaries, streams, lakes and animals around the world, including the United States, India, Malaysia, Vietnam, Ecuador, Brazil, the Caribbean, Canada, and Portugal

Microbial Selection Strategies

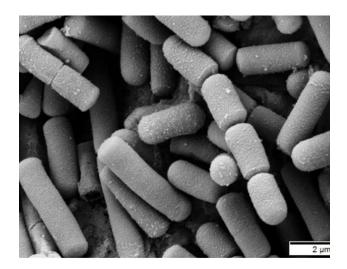
We look for microbes that create a natural, beneficial Bio-Floc, that can reduce ammonia, nitrite and nitrate. We screen for microbes that produce enzymes that are capable of digesting organic solids and bottom sludge.

These microbes then can help provide a natural healthy environment that is safe and less stressful for the animals.

In addition, we screen for microbes that are antagonistic against known animal pathogens which would further improve animal health and enhance our products.

In Vitro Screening

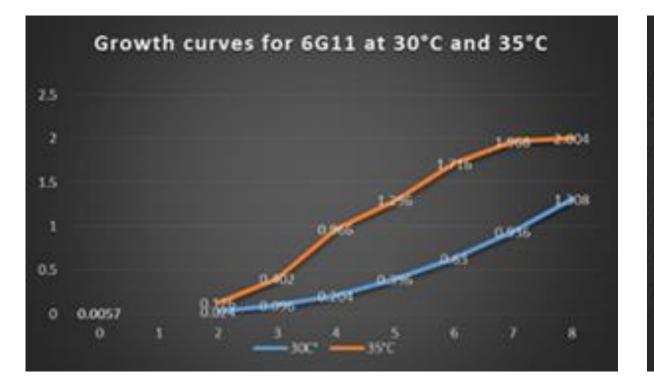
- Gram Stain
- Inhibitory Characteristics
- Growth Characteristics
- Salt Tolerance
- Enzyme profiles
- Water management capabilities
- Identification

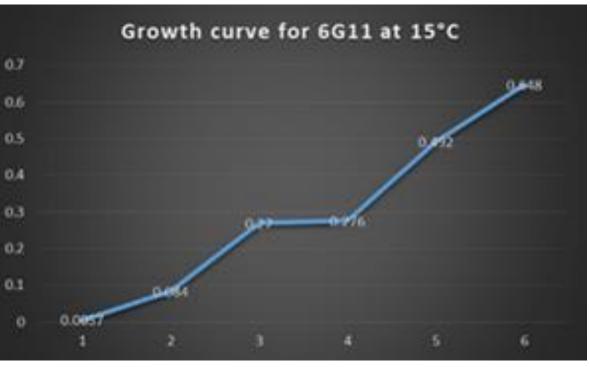


Natural Occurring Bacillus

Non-GMO, Gram +, Spore formers

- Bacillus amyloliquefaciens.
- Bacillus licheniformis.
- Bacillus pumilus
- Bacillus subtilis.
- Bacillus megaterium.


Inhibition Studies with Aquaculture Pathogens


			V. harveyii	V. parahaemolyticus			V. vulnificus	F. psychrophilum	E. ictaluri	
				A3	O3K6	VNM	ECU			
subtilis	RA24	oyster, HI	***			###	#	*	#	
	RA26	oyster <i>,</i> HI				* * * *			#	
	RA47	oyster, WA	#		#	##	#			* * * * *
	RA54	oyster, WA	*	*		*	#	#		*
	RA165	oyster, WA	###			**		#	##	
pumilus	6G11	water,ECU	#####		***	***	****	*	#####	
	RA158	oyster, VA		##			##		#	*
amyloliqu	RA203	ocean, MYS	##	*		#	***	*	#	***
	RA21	oyster, HI	##	*	*			**	##	
	RA259.2	ocean, CT		*		*	*	*		*
	RA19	oyster, HI	##	*	*		#	*		

Growth Curves

Enzyme Production

		cellulase	amylase	caseinase	urease	lipase	Phosphate
							Solubilization
subtilis	BS	5	5.3	1	0	10	POS
	RA165	5	4	1	0	10	POS
	RA24	5	5	1	0	10	NEG
	RA47	5.5	5	1	0	6	POS
amyloliquefaciens	BA	7	5	11	0	7	POS
	RA203	7	5.5	11	0	6	?
	9H6	7	5	11	0	5.5	POS
pummilus	BP	0	0	0	0	7	POS
	6G11	0	0	0	0	6	POS
licheniformis	BL	4	0	<1	2mm	5	NEG

Cellulase, catalyzes the decomposition of cellulose and of some related polysaccharides.

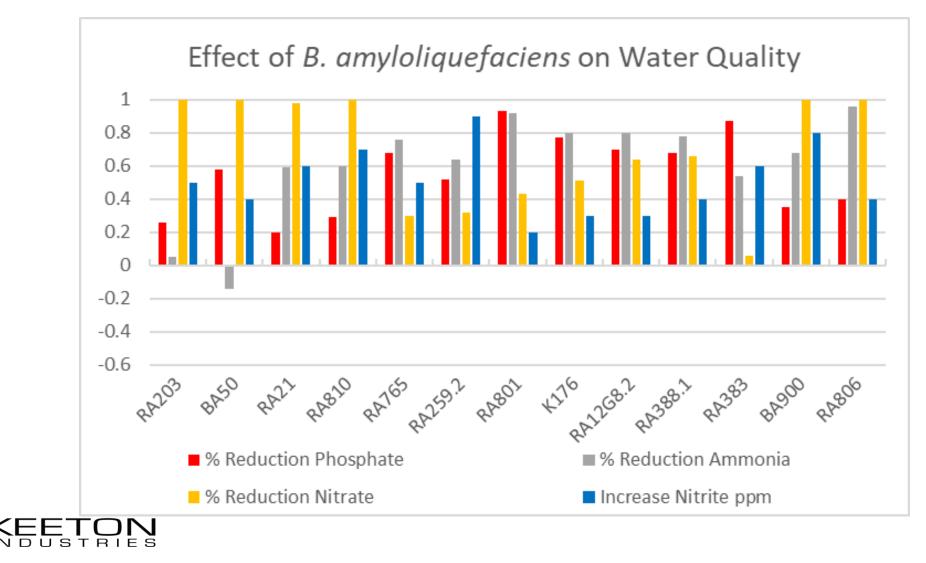
Amylase, hydrolyzes the glycosidic bonds in starch molecules, converting complex carbohydrates to simple sugars. Caseinase, hydrolyzes casein into smaller soluble amino acids.

Urease, catalyzes the hydrolysis of urea to ammonia and carbon dioxide.

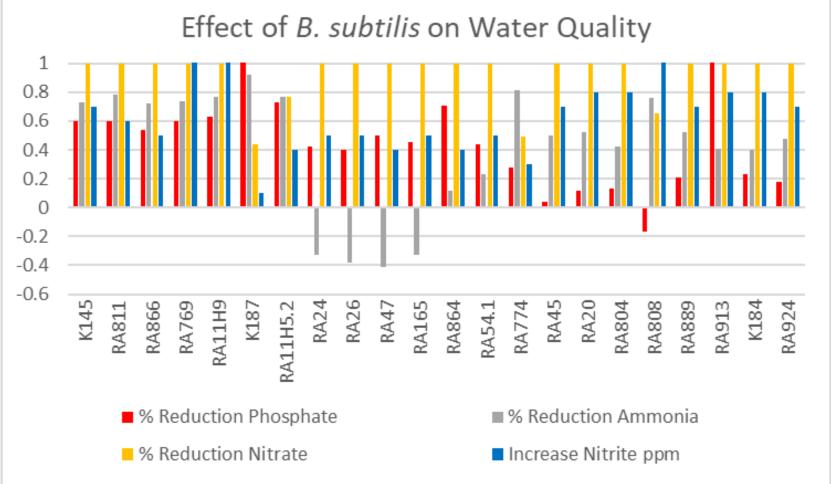
Lipase, break down triglycerides into free fatty acids and glycerol.

Phosphate solubilizing inorganic phosphorus from insoluble phosphate.

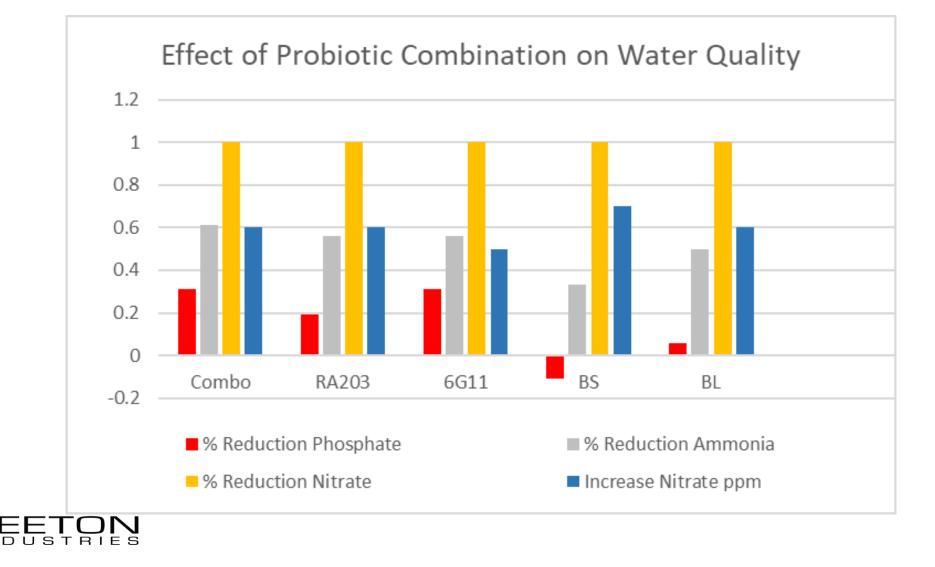
Salt Tolerance of Beneficial Microbes


subtilis	TSB/Salt %	TSB/Salt 2.5%	TSB/Salt 5%	TSB/Salt 7.5%	TSB/Salt 10%	Source
RA ₄₇	+	+	+	+	-	oyster
RA54.1	+	+	?	+	-	oyster
RA165	+	+	+	+	-	oyster
11H9	NG	+	+	+	-	estuary
11H5.2	+	+	+	+	-	estuary
RA768	+	+	+	-	-	beach
RA804	+	+	+	+	-	ocean
K145	+	+	+	-/+	-	shrimp farm
RA864	+	+	+	-/+	-	Feather
RA866	+	+	+	+	-	Feather
RA889	+	+	+	-/+	-	Honey
amyloliquefaciens	TSB/Salt o%	TSB/Salt 2.5%	TSB/Salt 5%	TSB/Salt 7.5%	TSB/Salt 10%	Source
RA383	+	+	+	+	-	Trout Farm
RA388	+	+	+	+	-	Trout Farm
RA21	+	+	+	+	-	Oyster
RA259.2	+	+	+	+	-	Ocean
RA203	+	+	+	+	-	Oyster
RA810	+	+	+	-/+	-	Kelp
К176	+	+	+	+	-	Worm Casting
RA806	+	+	+	+	-	Ocean

Sea water is equal to 3.5% salt



Effect Probiotics Have on Water Quality


Effect Probiotics Have on Water Quality

Effect Probiotics Have on Water Quality

Identification

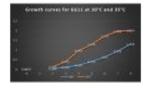
MALDI-TOF Microbial ID Services Using Accugenix

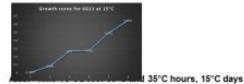
- Higher confidence for species-level identifications when applying MALDI-TOF for microbiology lab applications.
- AccuPRO-ID MALDI-TOF is cGMP-compliant and ISO 17025-accredited.
- Accugenix proprietary MALDI-TOF microbial database provides more extensive coverage for environmental monitoring isolates than any other commercially available MALDI-TOF system for microbiology labs.

Accugenix ProSeq

- Highly discriminatory and accurate sequence-based method that can be used to distinguish between very closely related microorganisms to the species level.
- Resolution is achieved by analyzing protein-coding genes.

A Probiotic Profile

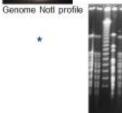

6G11 Bacillus pumilus BOX 6 4: 4-6 Isolate History: October 14, 2017 6G11 was isolated from a water sample collected from an Estuary in Ecuador, Identified by Charles River Accugenix® Services


General Characteristics of B. pumilus species:

Chromosome circular Size approximately 3.68 Mbp Predicted proteins apporox. 3928 GC content approx. 41% Aerobic chemoheterotrophic Mesophilic (grows 20°C-45°C) Salt Tolerant 0-10% Optimal Growth 30-37°C Motility flagellated Endospores

Specific Characteristics 6G11

Temperature Growth Curves:

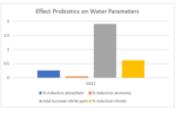


Gram Positive: rod shaped

Salt Tolerance: 6G11 grows well in TSA with 2.5%, 5% 7.5% or 10% salt

pH tolerance:

Inhibition studies:

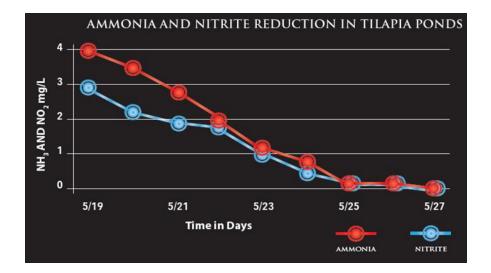

Bacteriostatic = BS+, Bactericidal = BC+

Pathogen	Isolate	30°C	15° C	RT
Vibrio harveyi	RV11		-	
V .parahaemolyticus	03K6 AHPND-	BC+		
	K144	BC+		
	AHPND+			
	ECA1 AHPND-	BC+		
	ECA2	BS+		
	AHPND+			
	A3 AHPND+			
	K143			
V. vulnificus	RV9	BC+		
V. alginolyticus	RV13			
	RV61			
	RV192			
V. anguilarum	RV50			
	RV51			
V. proteolyticus	RV58			
V. ponticus	RV12			
V. corallyticus				
V. tubiachii				
v. owensii	RV7			
Flavobacterium			+	
psychrophilum				
F. Limicola	RV601		+	
	RV602		+	
Aeromonas	RV417	+		
salmonicida				
	RV600			
Flavobacterium spp.	RV599			
Edwardsiella ictaluri				ne

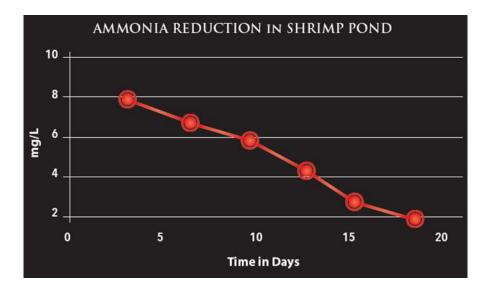
Enzyme Activity

Enzyme	30°C	35°C
Lipase	+	
Amylase		
Cellulase		
Protease		
Phosphate solubilizing	+	
Catalase		
Citrase		
Oxidase		
Urease		
Gelitinase		

Effect of 6G11 on Phosphorus, Ammonia, Nitrate and Nitrite in water


Product Formulation

- Choose a set of microbes that demonstrate properties that digest sludge and enhance the animal environment.
- They need to work together and not be competitive.
- The right proportions for each microbe needs to be established.
- The application method that best suits the target needs to be determined.
 - Granular for water column.
 - Pellets sink to sludge level.
- The product needs to be tested *in vivo*.
- Application options tested.



In vivo Studies with WSR on Water Quality

Eliminate the need for water exchange & increase biosecurity

Waste and Sludge vs Microbes

Before Treatment

Assessing Beneficial Microbial Interactions

• Four microbes commonly used in aquaculture

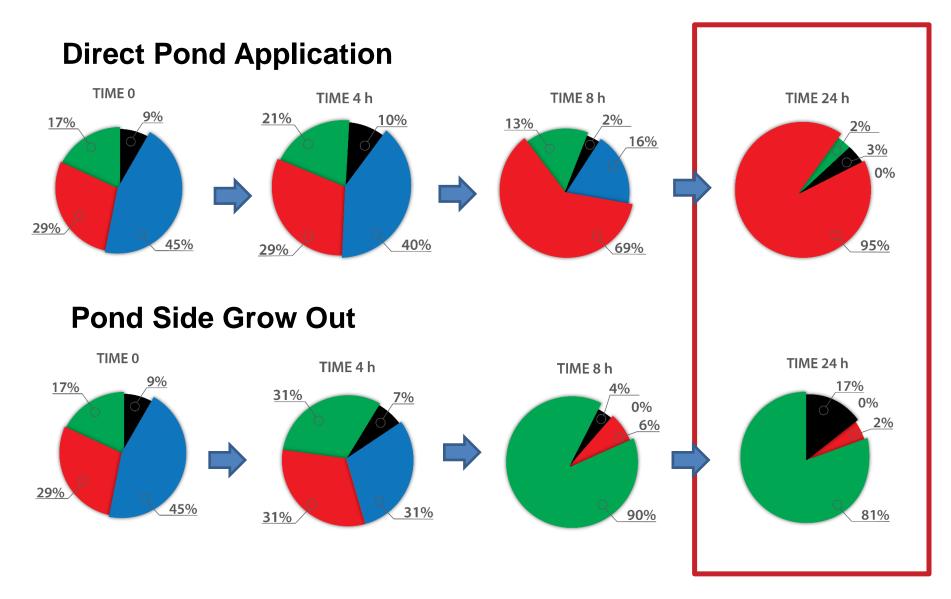
Culture Filtrate	Bacterial lawn on agar plate surface						
	Bacillus licheniformis	Bacillus pumilus	Bacillus subtilis (A)	Bacillus amylolique- faciens	Bacillus methylo- trophicus		
B. subtilis A	Diffuse	14 mm	-	16 mm	17 mm		
B. subtilis B	-	-	11 mm	12 mm	10 mm		
B. subtilis C	-	-	-	-	-		
B. subtilis D	-	-	-	-	-		

Summary:

 Inhibition was prevalent between Bacillus species, but varied from no inhibition to largely inhibited.

Testing Application Methods

Pond side grow out of multispecies probiotics changes the composition and the efficacy compared to direct application


Simulate pond conditions in vitro by growing microbes in TSB media with 2% salt.

Total Microbe Concentration based on field application rates. Standardized for all tests.

Comparing Direct Pond Application vs. Pond Side Grow Out at 28°C Over time

Pond Side Grow Out vs Direct Application

- The loss of microbial diversity in Pond Side Grow Out products is significant
- Pond side grow out products are not cost effective if you lose microbe diversity important to pond health.
- Direct Application of probiotics is better when more than one microbe is present

Recommendations for Direct Application

Direct application of beneficial bacteria products should be performed every 5-7 days to ensure high beneficial microbe concentrations

WSR tablets fall to the pond bottom to directly work where they are needed most

Conclusions

Collecting microbes from various environments have enhanced our collection and provided an important resource to produce a myriad of products to help the future of sustainable aquaculture. The profiles we develop for our microbes allows us to determine which probiotics are appropriate for products to reduce pond waste and sludge and which products would be appropriate to use for animal health. The **WSR** product was tested in the field and was found to be highly effective in reducing waste and sludge.

KEETON INDUSTRIES

Questions on Products and Applications

Luke Keeton

luke@keetonaqua.com

Chaithanya Noti Chaithanya.noti@keetonaqua.com

Acknowledgements

Keeton Industries

