

Fish for health: improving the nutritional value of fish & shrimp for health & human consumption


Albert G.J. Tacon ¹, Daniel Lemos ² & Rodrigo Carvalho ³

¹ Aquahana LLC, Kailua, Hawaii 96734, USA

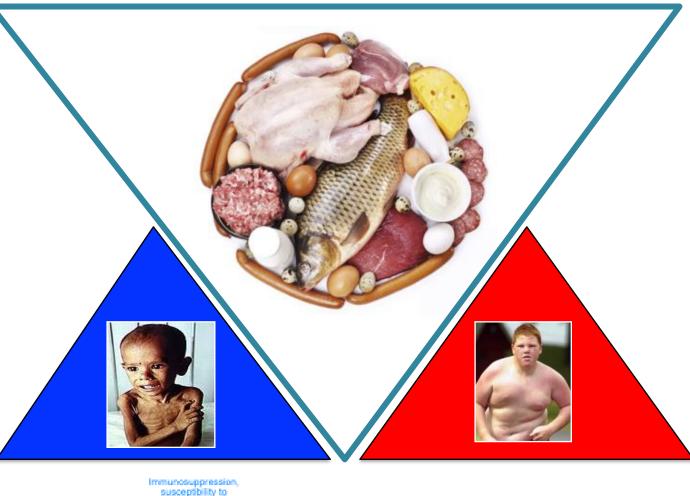
² Laboratório de Aquicultura, Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brasil

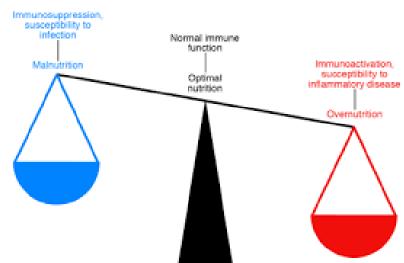
³ Tecnologia do Pescado e Nutrição, Unidade Acadêmica Esp. Ciências Agrárias, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.

MALNUTRITION

represents

The World's Greatest Preventable Health Challenge



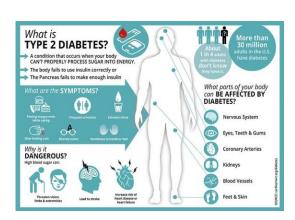

The double-burden of Malnutrition

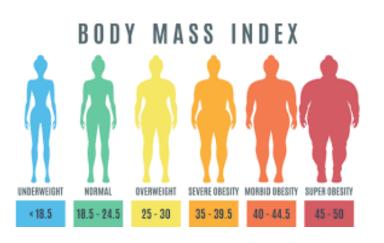
Under-nutrition

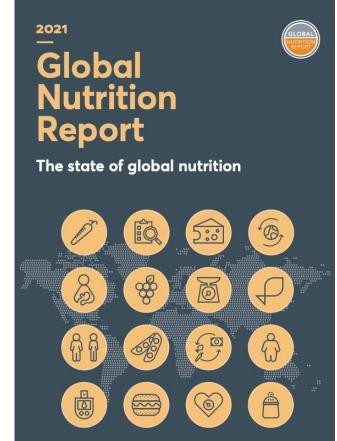
- Wasting
- Stunting
- Underweight
- Vitamin & mineral deficiency

Over-nutrition

- Obesity
- Heart disease
- Hypertension
- Stroke
- Diabetes

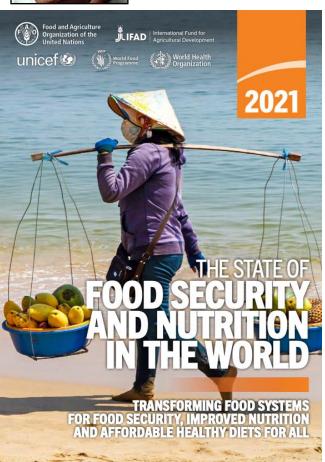

Global scale of Malnutrition

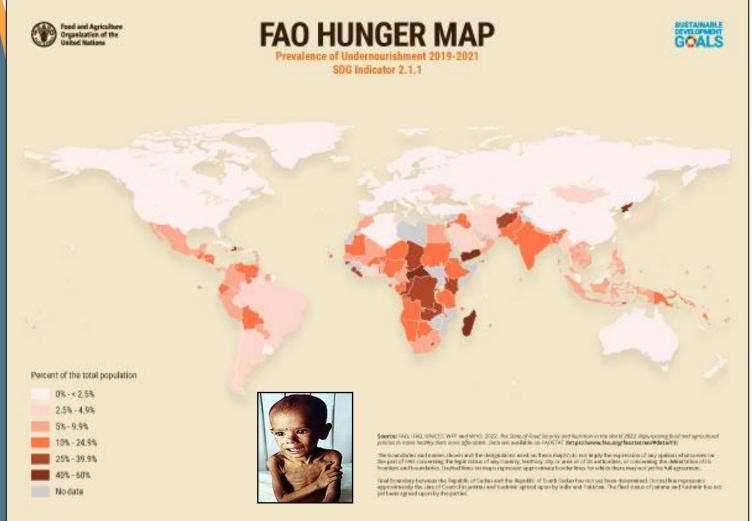

CHILDREN

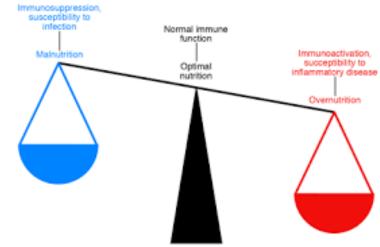

- Stunted 149.2 million children or 22% of all children
- Wasted 45.5 million children or 6.7% of all children
- Low birth weight 20.5 million or 14.6% of all live births
- **➤** Overweight 38.9 million children or 5.7% of all children

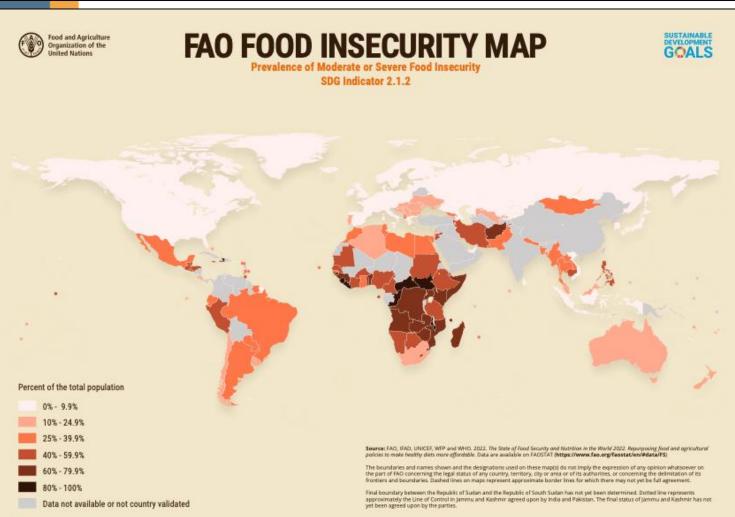
ADULTS

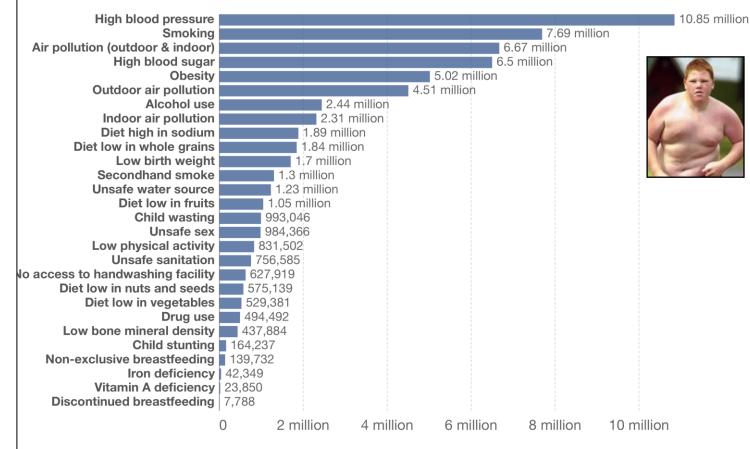
- Underweight 451.8 million people
- Anemia 571 million girls and women
- **➢ Overweight 2.2 billion with 772 million affected by obesity**
- ➤ Raised blood pressure 1.2 billion people
- **→ Diabetes 538.7 million people**

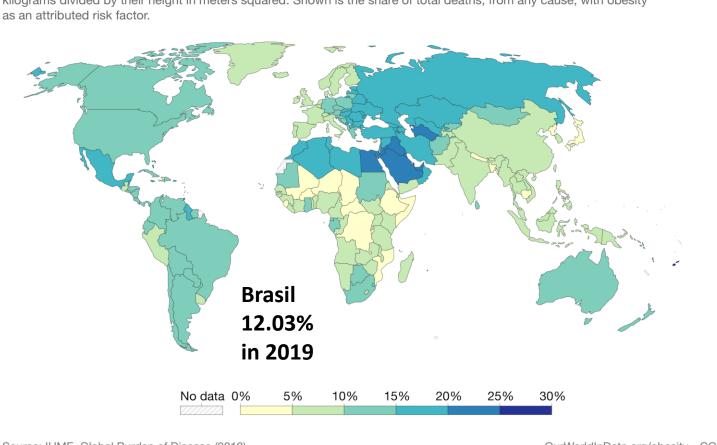











Total annual number of deaths by risk factor, measured across all age groups and both sexes.

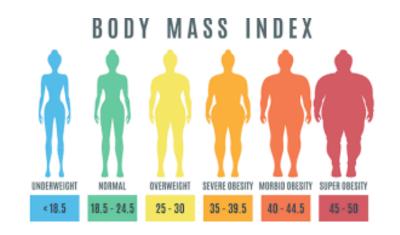
Share of deaths attributed to obesity, 2019

Source: IHME, Global Burden of Disease (2019)

Obesity is defined as having a body-mass index (BMI) equal to or greater than 30. BMI is a person's weight in kilograms divided by their height in meters squared. Shown is the share of total deaths, from any cause, with obesity

Source: IHME, Global Burden of Disease (2019)

OurWorldInData.org/obesity • CC BY


OurWorldInData.org/causes-of-death • CC BY

Our World in Data

Our World in Data

Over past 50 years there has been a rapid increase in over-nutrition and associated ailments;

Including obesity, coronary heart disease, diabetes and hypertension;

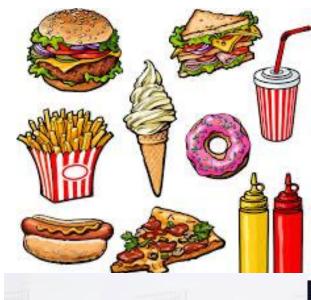
Due primarily to the increased consumption of lower cost fast-foods, red meats & dairy produce, together with a less active & sedentary lifestyle

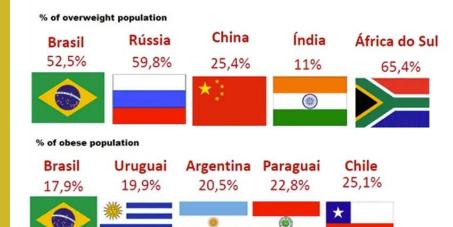
Fast Foods

Include food items that can be prepared & served quickly

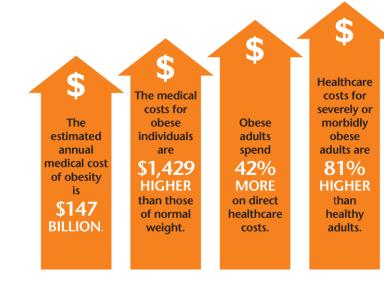
- processed red meat products: hot dogs, hamburgers, sausages, bacon, ham, spam, corned beef;
- processed & refined carbohydrates: biscuits, cookies, donuts, pancakes, muffins, crackers, bread, pizza, pasta;
- fried foods: french fries, hash browns, fried chicken, chicken nuggets;
- sugary drinks, sweets, cheeses & ice cream:

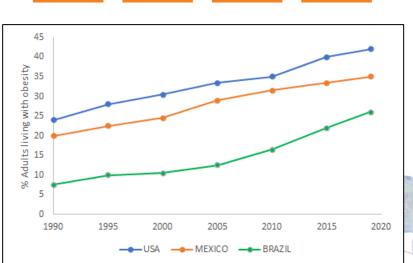
The Rise of Fast Foods


- lower cost and affordability
- bigger portion sizes
- taste and accessibility
- increased convenience & ability to purchase on-line


Obesity rates

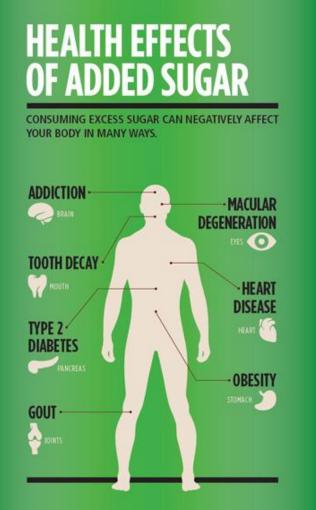
As % of total adult population (aged 15 years and over), 2015 or nearest year


Note: * means that self-reported height and weight data are used in these countries, while measured data in other countries. Source: OECD (2017), OECD Health Statistics 2017 (Forthcoming in June 2017). www.oecd.org/health/obesity-update.htm





Source: Ministry of Heath Brazil

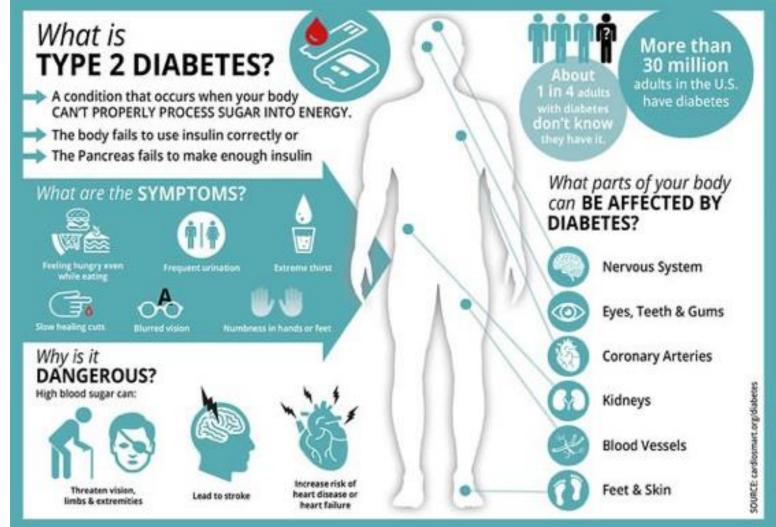

Soaring medical costs associated with treating obesity & associated ailments

LOOKING FOR SUGAR? It goes by many names.

BROWN RICE SYRUP CORN SYRUP HONEY FRUIT NECTAR MAPLE SYRUP MALT SYRUP AGAVE NECTAR MOLASSES EVAPORATED CANEJUICE CORN SYRUP SOLIDS

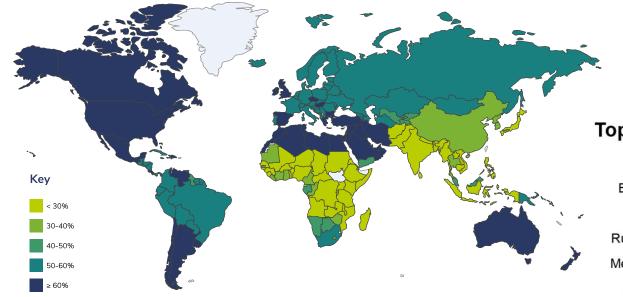
GALACTOSE GLUCOSE-FRUCTOSE SYRUP CRYSTALLINE FRUCTOSE MALTOSE DEXTROSE HIGH-FRUCTOSE CORN SYRUP

If a sweetener is listed in the first three


ingredients, the drink is loaded with sugar.

Americas – contribution of sugars & sweeteners to total energy supply in 2019

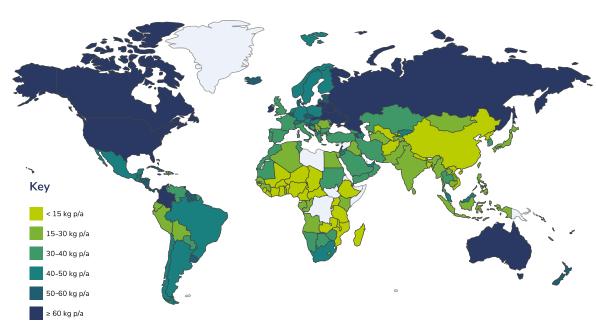
Colombia	601 (20.1%), 2,992 calories
Guatemala	459 (18.0%), 2,556 calories
Costa Rica	500 (16.7%), 2,996calories
Honduras	443 (16.5%), 2,678 calories
Nicaragua	413 (15.8%), 2,620 calories
El Salvador	423 (15.4%), 2,739 calories
USA	591 (15.3%), 3,862 calories
Suriname	423 (15.3%), 2,758 calories
Cuba	505 (15.0%), 3,375 calories
Uruguay	477 (15.0%), 3,209 calories
Chile	442 (14.3%), 3,078 calories
Mexico	426 (13.5%), 3,163 calories
Argentina	433 (13.1%), 3,304 calories
Bolivia	276 (11.2%), 2,464 calories
Canada	407 (11.5%), 3,539 calories
<u>Brazil</u>	405 (12.5%), 3,246 calories
Ecuador	269 (10.5%), 2,563 calories
Peru	217 (7.7%), 2,786 calories


COVID-19 and Obesity: The 2021 Atlas

The cost of not addressing the global obesity crisis March 2021

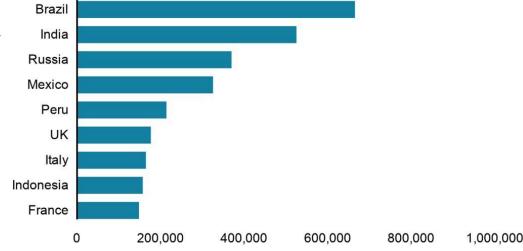
www.worldobesity.org

2. Prevalence of overweight in adults

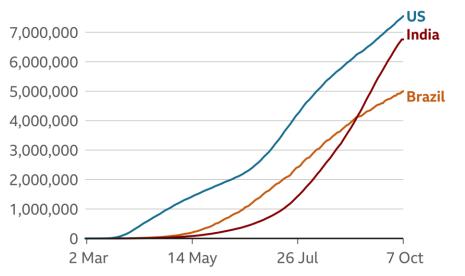

Adult overweight BMI > 25kg/m²

Source: World Health Organization, Global Health Observatory.

11. Consumption of sugars


Kilograms per person per year

Source: UN Food and Agriculture Organization, Food Balance Sheets.


Top 10 countries for recorded Covid deaths

Source: Johns Hopkins University, data as of 4 May

Brazil has third-highest number of cases

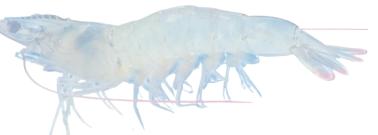
Total number of officially confirmed cases of coronavirus

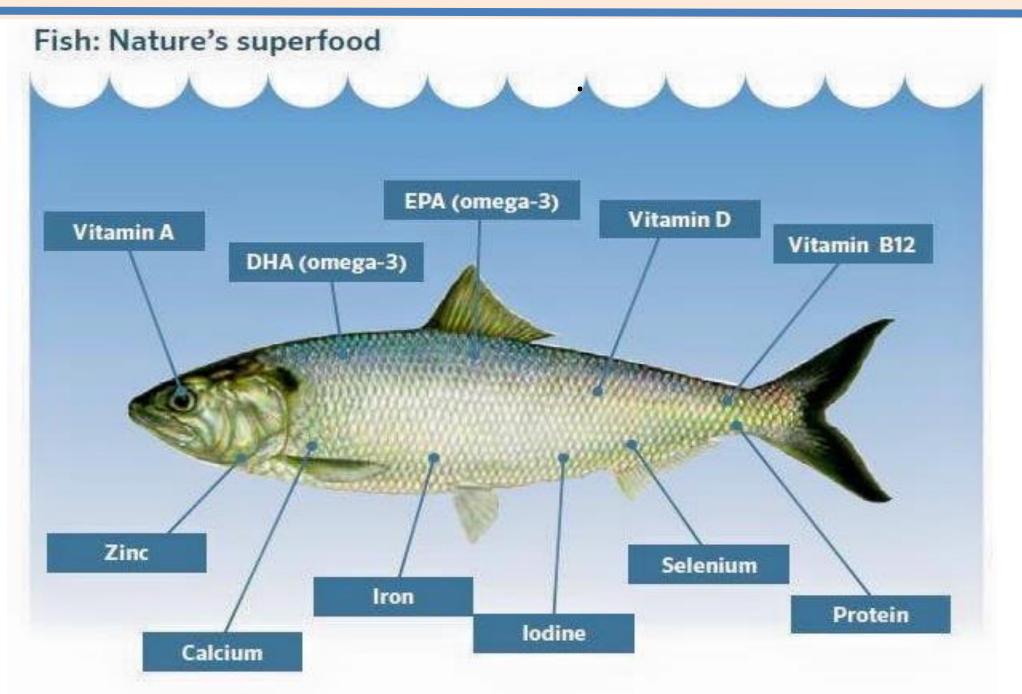
Source: Johns Hopkins University, data to 7 October

BBC

BBC

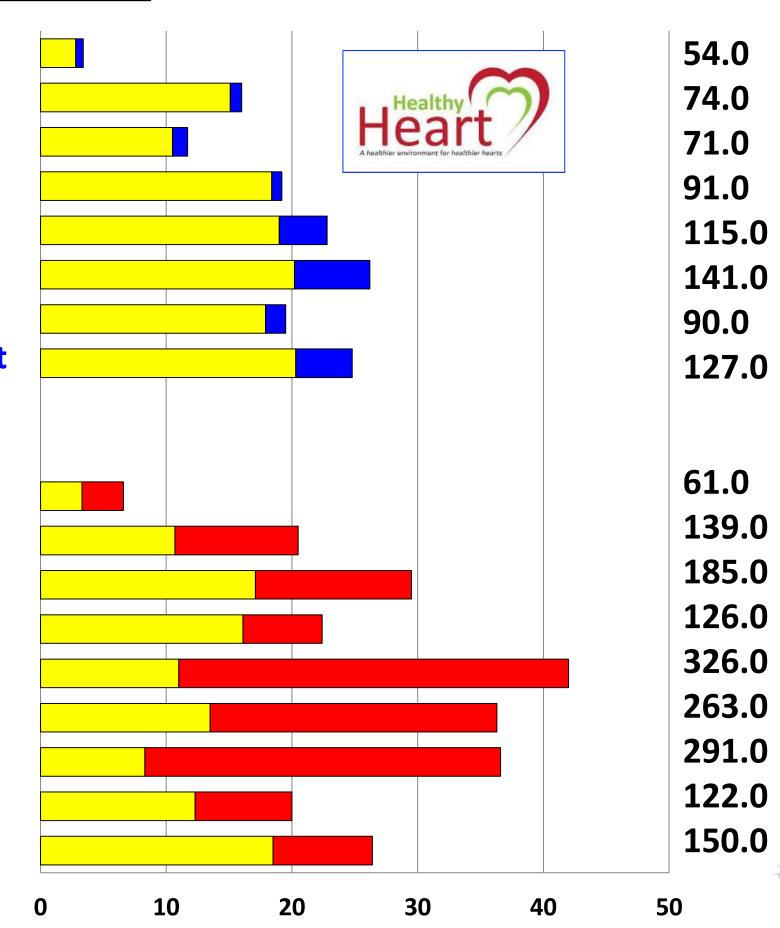
Global importance of aquatic foods in human nutrition as a much needed healthy food source





Global importance of aquatic foods in human nutrition as a much needed healthy food source

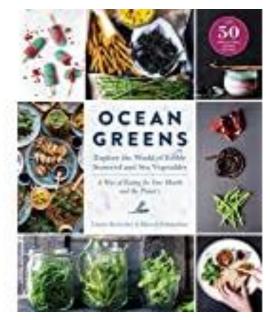


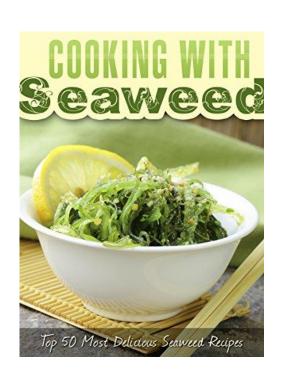

Nutrient content of different foods

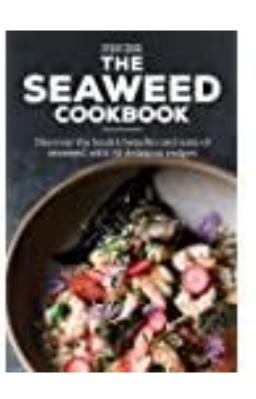
Protein Fat n-3 n-6 kcal/100g

Aquatic plants
Cephlapods frozen
Molluscs frozen
Crustaceans frozen
Marine fish nes fillet
Pelagic fish fillet
Demersal fish fillet
Freshwater/diadromous fish fillet

Cows milk
Hens egg
Poultry meat
Turkey meat
Pig meat
Muttton & lamb
Duck meat
Chicken meat
Beef boneless




Tacon & Metain (2013)


Japanese Seaweed Salad Teady in 10 minutes

EDIBLE AQUATIC PLANTS OR SEA VEGETABLES

- Essential amino acids: red seaweeds > green seaweeds
 brown seaweeds; taurine, glutamic acid;
- Essential fatty acids: omega-3 PUFA, EPA;
- Dietary soluble & insoluble fiber;
- Essential minerals: iodine, iron, zinc, copper, magnesium, potassium, calcium);
 - Essential vitamins: vitamin C, vitamin E, vitamin B_{12,} thiamin, riboflavin, niacin, pyridoxine, inositol & folic acid (MacArtain et al. 2007; Pereira, 2011)

HEALTH ATTRIBUTES OF FISH & SEAFOOD

Reported health benefits of consuming fish & fishery products, including:

- Reduced risk of death from coronary heart disease & stroke (FAO/ WHO, 2011; Forouhi et al. 2018; He 2009; Hellberg et al. 2012; Verbeke et al. 2005; Wallin et al. 2012),
- Reduced risk of diabetes (Wallin et al. 2012),
- Increased duration of gestation & improved visual & cognitive development (Hellberg et al. 2012),
- Improved neurodevelopment in infants & children when fish is consumed before & during pregnancy (FAO/ WHO, 2011), and
- Reduced risk of thyroid cancer in women through seaweed consumption (Michikawa et al. 2012).

Global importance of aquatic foods in human nutrition as a much needed healthy food source

Reviews in Fisheries Science, 21(1):22-38, 2013 Copyright © Taylor and Francis Group, LLC ISSN: 1064-1262 print / 1547-6553 online Taylor & Francis
Taylor & Francis
Taylor & Francis

REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23/308249.2022.2124364

REVIEW

Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply

ALBERT G. J. TACON1 and MARC METIAN2

¹Laboratório de Aquicultura (LAM), Instituto Oceanográfico, Universidade de Saō Paulo, Saō Paulo, Brasil
²Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

In a world where nearly 30% of humanity is suffering from malnutrition and over 70% of the planet is covered with water, aquatic foods represent an essential component of the global food basket to improve the nutrition, health, and well being of all peoples.

Contribution of Fish and Seafood to Global Food and Feed Supply: An Analysis of the FAO Food Balance Sheet for 2019

Albert G. J. Tacon (b)

Aquahana LLC, Kailua, Hawaii, USA


Fish for Health: Improved Nutritional Quality of Cultured Fish for Human Consumption

Albert G. J Tacon, Daniel Lemos & Marc Metian

To cite this article: Albert G. J. Tacon, Daniel Lemos & Marc Metian (2020) Fish for Health: Improved Nutritional Quality of Cultured Fish for Human Consumption, Reviews in Fisheries Science & Aquaculture, 28:4, 449-458, DOI: 10.1080/23308249.2020.1762163

To link to this article: https://doi.org/10.1080/23308249.2020.1762163

In most Asian & African countries fish represents the cheapest source of animal protein

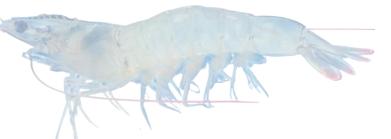


Table 4. Top aquaculture country producers and capture fisheries landings in 2020 (values given in metric tonnes; FAO 2022c).

Top aquaculture producers	2020	Top capture fisheries landings	2020
China	70,483,538	China	13,445,983
Indonesia	14,845,014	Indonesia	6,989,382
India	8,641,286	Peru	5,675,209
Viet Nam	4,614,692	India	5,522,714
Bangladesh	2,583,866	Russian Federation	5,081,017
Korea Rep	2,327,903	USA	4,253,236
Philippines .	2,322,831	Viet Nam	3,421,880
Egypt	1,591,896	Japan	3,215,130
Chile	1,505,486	Norway	2,603,574
Norway	1,490,412	_Chile	2,182,768
Total aquaculture production	122,580,187	Total capture fisheries landings	91,420,562

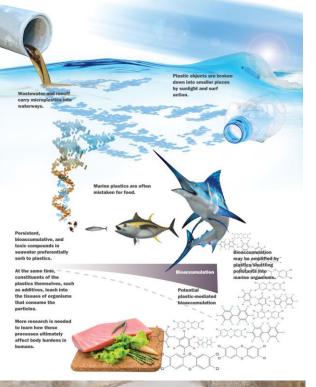
Ssource: Tacon, 2022

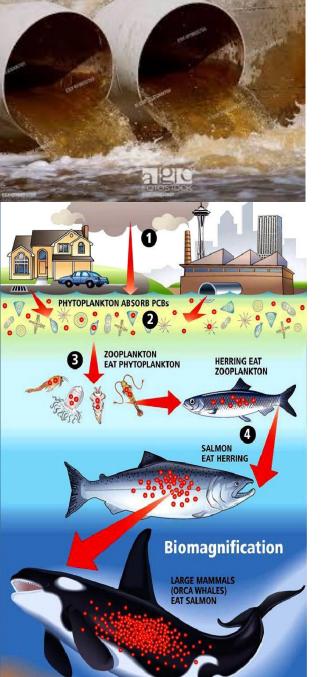
Brasil 16th

630,200

Brasil 27th

709,391 E


Not all fish are created equal


Nutritional composition & potential health value depends upon:

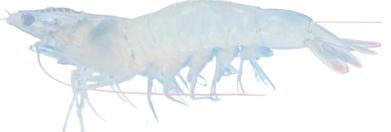
- Species & part consumed: fillet, whole, head, offal
- Source: wild, farmed, recreational fishery, marine, freshwater
- Country of origin & method of production
- Cooking method prior to consumption
- Nutrient composition of the feed used if farmed

Potential Health risks of fish & seafood consumption

- Risk from the consumption of raw and/or unprocessed fish & seafood contaminated with viable pathogenic organisms, including parasites, nematodes, cestodes, trematodes, bacteria, and toxins (depending on species), these risks can be eliminated through proper cooking & handling (FAO/WHO, 2003; Hellberg et al. 2012).
- Risk from the presence of environmental contaminants (depending upon species & origin), including heavy metals (Hg, Cd, As), persistent organic pollutants (POPs PCBs, dioxins), veterinary drug residues, and micro-plastics (Berntssen et al. 2010; Domingo et al. 2007; FAO/WHO, 2011; Hellberg et al.., 2012; Tacon & Metian 2008; Verbeke et al. 2005; VKM, 2014).

FAO Fisheries and Aquaculture Report No. 978	FIPM/R978(En)
TAO Fisheries and Aquaculture Report No. 378	ISSN 2070-6987
Report of the	
JOINT FAO/WHO EXPERT CONSULTATION ON THE R	RISKS AND
BENEFITS OF FISH CONSUMPTION	
Rome, 25–29 January 2010	
Rome, 25 27 Ganuary 2010	

Notwithstanding the above mentioned risks, it is generally believed that the higher nutritional value and potential health benefits derived from increased fish consumption far out-way the potential negative risks to human health (FAO/WHO, 2003, 2011; VKM, 2014).



Contribution of fish to animal protein supply in the Americas - 2019

Bolivia: 2.1% El Salvador: 7.9%

Argentina: 3.0% Nicaragua: 8.4%

Honduras: 3.5% Canada: 9.1%

Brazil: 4.4% Mexico: 9.5%

Cuba: 4.5% Panama: 10.4%

Guatemala: 4.5% Costa Riva: 12.3%

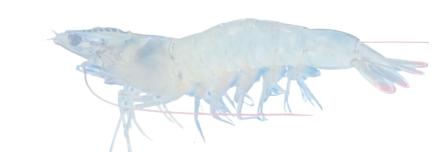
Paraguay: 4.6% Venezuela: 13.4%

Comobia: 5.3% Suriname: 14.6%

Uruguay: 5.5% Peru: 16.5%

Chile: 7.1% Guyana: 18.4%

Ecuador: 7.1%


USA: 7.1% World

FAO, 2022

16.5%

Contribution of fish & seafood to animal protein supply - 2019

South America	
Northern America	

Central America

Oceania

Europe

World

Africa

Sri Lanka:

49.4%

Asia

5.6% (Brazil 4.4%)

7.2% (USA 7.1%)

9.1% (Mexico 9.5%)

10.5% (Australia 8.7%)

11.1% (Norway 22.6%)

16.5%

35.7%

20.3% (Egypt 27.3%)

21.9% (China 21.7%)

Philippines:28.0%

FAO, 2022

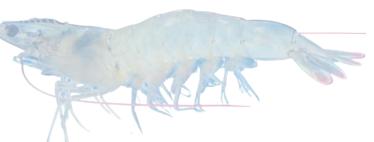
Cambodia:	69.6%	Gambia	44.0%	Angola:	35.5%
Kiribati	65.5%	Côte d'Ivoire:	44.3%	Senegal:	34.5%
Sierra Leone	61.3%	Congo DPR:	43.6%	Myanmar:	34.0%
Bangladesh:	60.1%	Cameroon:	41.0%	Japan:	33.9%
Solomon Islands	58.8%	Lao DPR:	40.0%	Togo:	33.4%
Maldives:	56.2 %	Thailand:	38.4%	Uganda:	31.0%
Indonesia:	55.6%	Malaysia	37.5 %	Korea Rep:	30.3%
Ghana:	53.8%	Nigeria:	35.9%	Rwanda:	28.8%

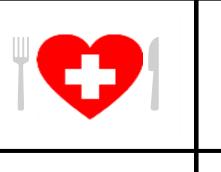
Seychelles

Per capita food supply in Japan, USA & Brasil in 2019

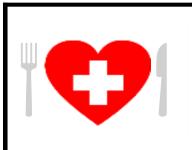
(FAO Food Balance Sheets, 2022)

	JAPAN	WORLD	BRASIL	USA
Calories (kcal/day)	<mark>2,691</mark>	2,963	3,246 +	3,862 ++
Fish & seafood (kg/year)	<mark>46.06 ++</mark>	19.91	8.95	22.13
Fish & seafood (g protein/day)	<mark>16.68</mark>	5.47	2.43	5.40
Fish & seafood (g fat/day)	<mark>5.76 ++</mark>	1.22	0.46	1.29
Fish % animal protein supply	33.9 ++	16.5	4.4	7.1
Animal protein (g/day)	49.17	33.16	54.86 +	75.93 ++
Animal fats (g/day)	<mark>35.74</mark>	38.89	<mark>62.76</mark> +	81.11 ++
Terrestrial meat (kg/year)	<mark>51.11</mark>	43.16	99.53 +	128.44 +
Sugar & sweeteners (kg/year)	<mark>26.39</mark>	26.07	42.14 +	66.11 ++
Sugar & sweeteners (% total cal)	9.2	7.8	12.5 +	15.3 +





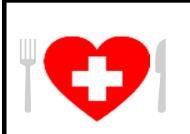
The aim of the project is to promote the increased use of farmed fish & seafood products as a more healthy alternative to the consumption of processed red meat products & fast-foods in the fight against obesity, coronary heart disease & diabetes



Início 1/10/2022

O projeto tem como objetivo a promoção e o aumento do consumo de peixes e alimentos de origem aquática (Pescado) como uma alternativa mais saudável para as carnes vermelhas processadas e as 'fast-foods' no combate à obesidade, doenças do coração e males associados no Estado de São Paulo;

PESCADO PARA SAÚDE U



Início 1/10/2022

Main project research tasks

FISH FOR HEALTH

1. Market survey of fish consumption in the State

1 - 6

2. Nutrient content & contribution to diet

4 - 16

3. Variability in nutrient content of fish & feed

12 - 30

4. Dietary nutrient enrichment of fish

24 - 48

5. Improved fish/fishery processing methods

24 - 48

6. Genetic markers nutrient profile

12 - 48

7. Results, education & increased consumption

36 - 60

Main project research tasks

FISH FOR HEALTH

1. Market survey of fish consumption in the State

1 - 6

2. Nutrient content & contribution to diet

4 - 16

3. Variability in nutrient content of fish & feed

12 - 30

4. Dietary nutrient enrichment of fish

24 - 48

5. Improved fish & seafood processing

24 - 48

6. Genetic markers & nutrient profile

12 - 48

36 - 60

7. Results,

education &

increased

consumption

Instituto de PESCA

PESCADO PARA SAÚDE

Realization that the nutritional profile of the cultured fed fish or shrimp can be augmented & tailored to meet the needs of the consumer through the use of supplemental omega-3 fatty acids level (EPA/DHA), trace minerals (iron, zinc, selenium, iodine, chromium), vitamins (A, D, E), and/or fillet protein/lipid/calorific energy content;

Farm Fish: A Superfood with many health attributes

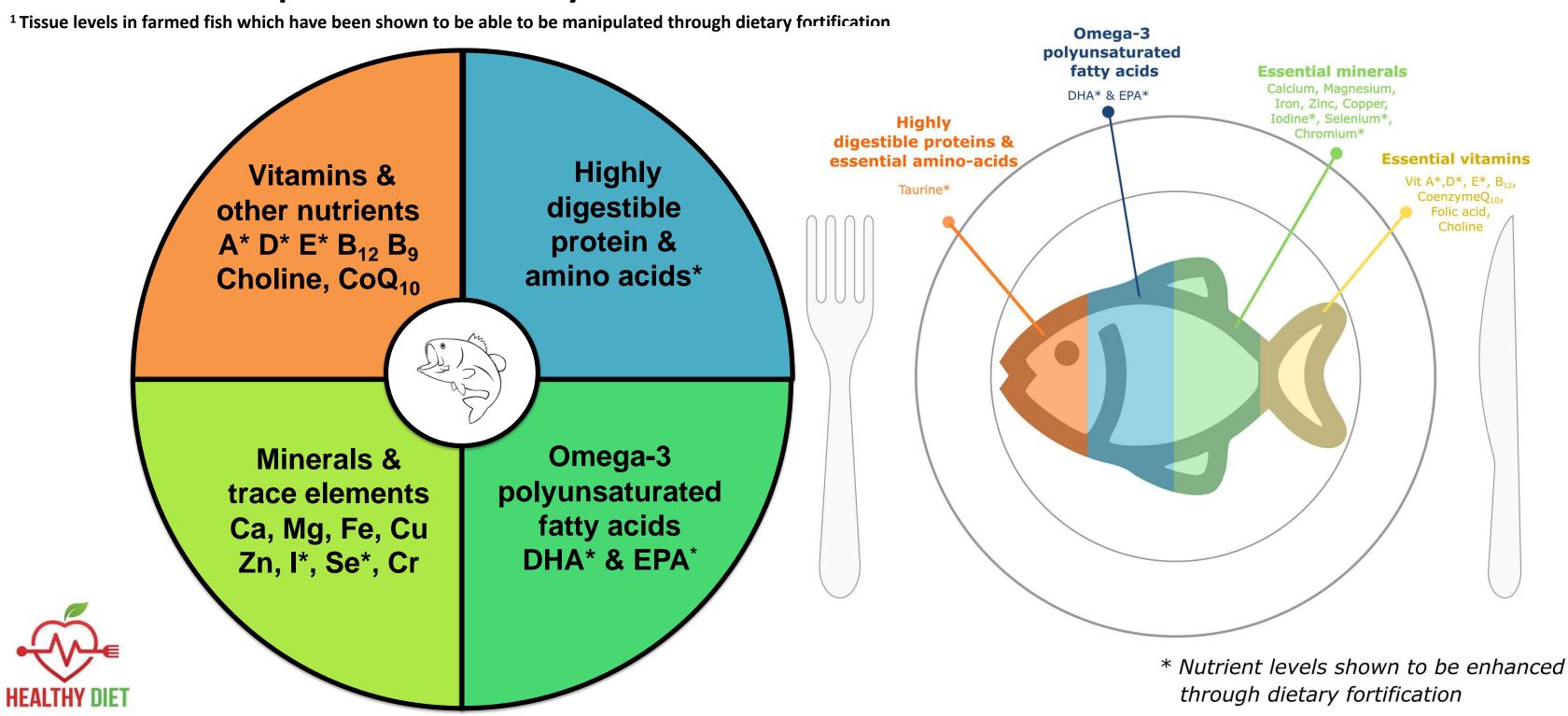
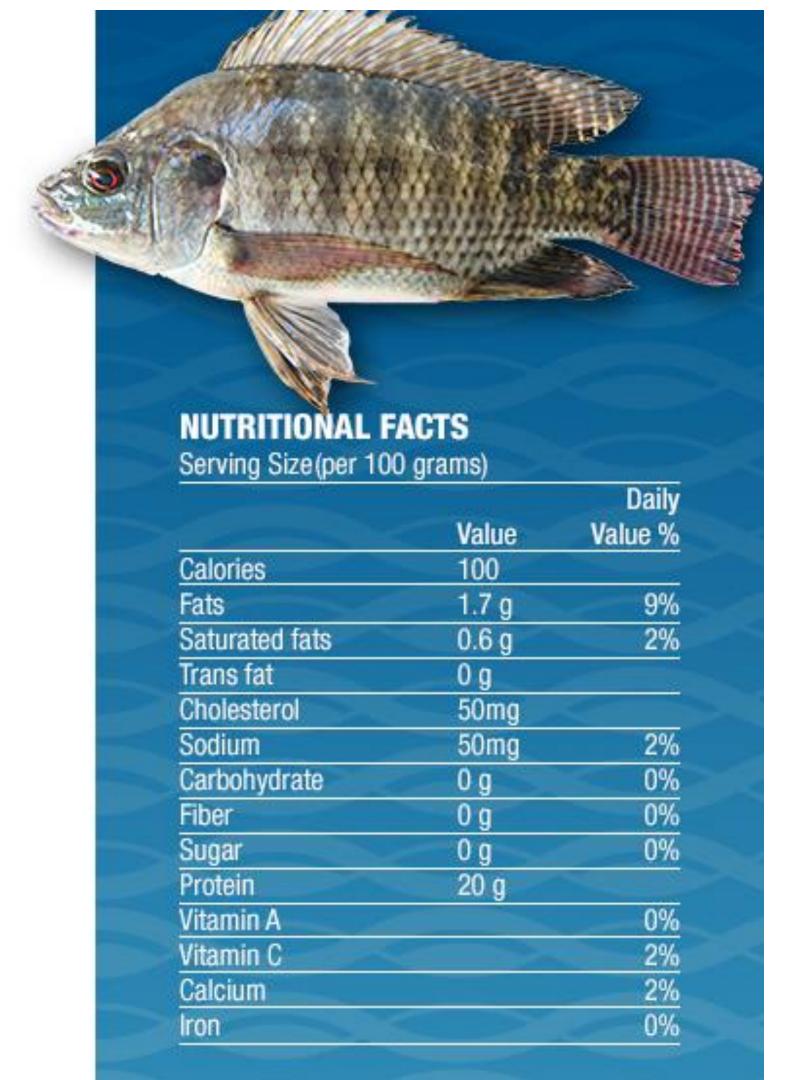



Figure 2. Farmed fish: a superfood with multiple health attributes.

Nutrition Facts

Serving Size 4 oz (113g) Servings Per Container Varies

Amount Per Serving

Calories 110	Calories	s from Fat 15
		% Daily Value*
Total Fat 2g		3 %
Saturated Fa	nt 0.5g	3%
Trans Fatg]	
Cholesterol 55	img	18%
Sodium 60mg		3%
Total Carbohy	drate 0g	0%
Dietary Fiber	· 0g	0%
Sugars 0g		
Protein 23g		

Vitamin A 0% • Vitamin C 0%

Calcium 2% • Iron 4%

*Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs:

	Calories:	2,000	2,500
Total Fat	Less than	65g	80g
Saturated Fat	Less than	20g	25g
Cholesterol	Less than	300mg	300mg
Sodium	Less than	2,400mg	2,400mg
Total Carbohydra	ate	300g	375g
Dietary Fiber		25g	30g

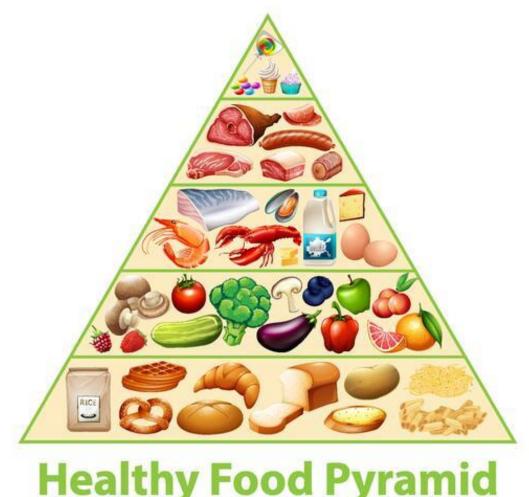
Calories per gram:

Fat 9 • Carbohydrate 4 • Protein 4

Production of lower-priced fish products

FENACAM' 22

15 a 18 de novembro de 2022



Increased Public Awareness

Urgent need to increase public awareness and understanding concerning the nutritional merits & health-benefits of increased consumption of fish and seafood products, including the inclusion of fish and aquatic foods as an essential component of a healthy diet and national dietary nutrient requirement guidelines, as well as the dangers of high intakes of processed foods and fast-foods on overweight, obesity, coronary heart disease, diabetes & associated ailments.

DIA NACIONAL DA SAÚDE E NUTRIÇÃO

aproveitamento integral do pescado

