"A interiorização do *L. vannamei* no Brasil: os desafios nos cultivos intensivos em sistemas intensivos com zero descarga de água".

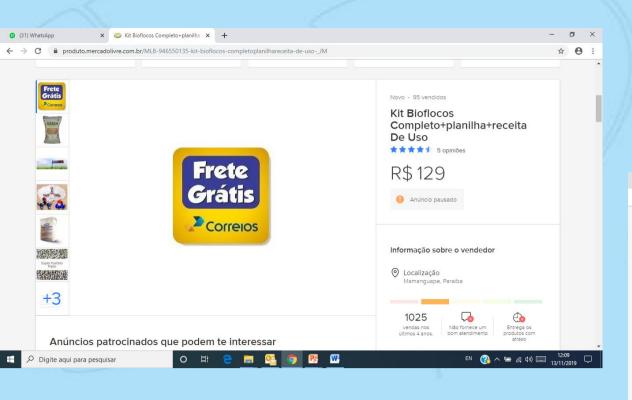
Fernando Kubitza

Acqua Imagem Serviços em Aquicultura Tel: + 55 11 99952-7040 fernando@acquaimagem.com.br

 Em diversos países o L. vannamei é cultivado longe do litoral, em viveiros com águas de baixa salinidade (0,5 a 2 ppt) e em sistemas intensivos com recirculação (RAS) ou bioflocos (BFT).

 No Brasil - após os surtos de enfermidades, houve expansão dos cultivos em áreas interiores (áreas virgens) do Nordeste. Resultados bons no início. Mas a mancha branca e outras enfermidades logo apareceram nessas áreas, pois não há disponibilidade de PL's livres de patógenos.

- No Brasil, o interesse em sistemas intensivos (BFT) com L. vannamei ganhou grande impulso após os surtos de mancha branca.
- Merecido destaque às pesquisas e capacitações realizadas pela equipe da FURGS no Rio Grande do Sul.
- O sucesso de alguns projetos, como o da Camanor, estimulou produtores / empresários, técnicos e pesquisadores a investir nos cultivos intensivos.
- No entanto, tivemos uma grande onda de iniciativas de cultivos usando BFT, porém grande parte dos projetos lograram pouco sucesso e muitos fecharam.



Os principais desafios aos cultivos intensivos (BFT)

- Enfermidades virais (IHHNV e WSSV) e bacterianas (vibriosis).
- Qualidade de água: salinização, balanço iônico, nitrito e sólidos.
- Custos com o transporte das pós-larvas.
- Reuso da água e aproveitamento dos sólidos.

Enfermidades causam severas perdas nos cultivos intensivos

- Sinais típicos de WSSV e IHNNV são comuns em camarões cultivados nesses sistemas (mesmo em áreas virgens).
- No Brasil não há disponibilidade de PL's resistentes aos patógenos.
 Tampouco PL's livres de patógenos específicos (SPF).

Specific pathogen free status advances shrimp culture

Friday, 1 May 2009

By Stephen G. Newman, Ph.D.

Broodstock selected through a multigenerational process of quarantine, sampling

Enfermidades causam severas perdas nos BFT

- Baixas sobrevivências (10 a 20%).
- As PL's já vêm com alguma carga viral.
- Altas densidades 10 a 40 PL's/I e 200 a 600 cam/m³.
- Canibalismo e fragmentos de camarões nos flocos.
- Reuso da água vs. aumento da carga viral.
- Tratamento da água (sólidos, cloro, UV e ozônio).
- Desinfecção e estabilidade dos flocos.
- Alternativa: reduzir sólidos 5 a 10 ml/l e vazio sanitário.
- Design fundamental para o manejo sanitário preventivo.

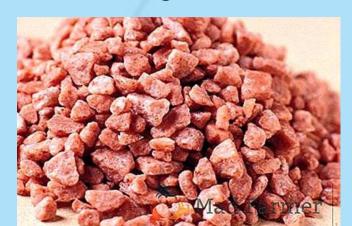
Qualidade de água - salinidade e balanço iônico

- Salinidades de 3 a 15 ppt nos BFT's longe do litoral.
- Cada 1 ppt custa R\$ 1,30 a 1,80/m³. Para 5 ppt = R\$ 6,50 a 9,00/m³.
- Portanto, o reuso da água é necessário.

Fundamentos do balanço iônico

Composição e relações iônicas da água do mar como base para determinar a necessidade de adição de íons em águas de diferentes salinidades preparada para o cultivo de *L. vannamei*.

Salinid. (ppt)	Mar 35 ppt	3	5	10	Água original	3	5	10
CI	19.350	1.659	2.764	5.529	0,5	1.658	2.764	5.528
Na ⁺	10.760	922	1.537	3.074	0,0	922	1.537	3.074
SO ₄ =	2.710	232	387	774	1,0	231	386	773
Mg ⁺²	1.290	111	184	369	23,0	88	161	346
Ca ⁺²	410	35	59	117	34,0	1	25	83
K⁺	400	34	57	114	1,1	33	56	113
HCO ₃		150	150	150	70,2	80	80	80
Na:K	26,9	26,9	26,9	26,9	0,0			
Mg:Ca	3,1	3,1	3,1	3,1	0,7			
CI:Na	1,8	1,8	1,8	1,8	500,0			
CI:K	48,4	48,4	48,4	48,4	0,5			



Qualidade de água - salinidade e balanço iônico

- Sal comum (cloreto de sódio), cloreto de potássio, cloreto de magnésio; sais de Epson (sulfato de magnésio), gesso (sulfato de cálcio), cal hidratada (hidróxido de cálcio), calcário dolomítico (CaMgCO₃), entre outras fontes de íons.
- Solubilidades distintas e variação na composição dessas fontes.
- Aporte de ração e extração de minerais pelos camarões (carapaças) modificam a composição iônica da água com o tempo.

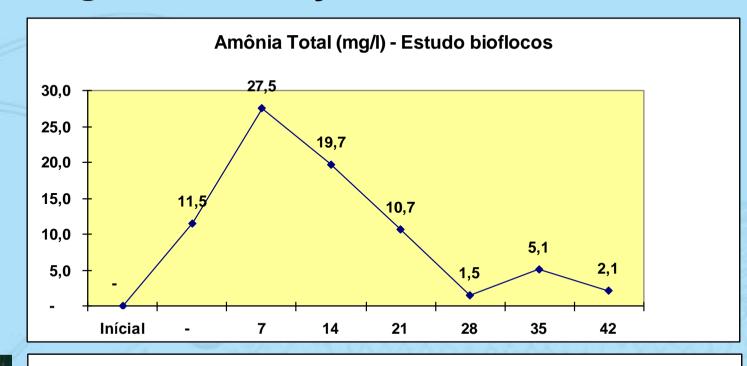
Principais íons	Agua 1	Agua 2	Agua 3	Água 4	Água do mar	• Á a
HCO ₃	303	296	309	334	142	• Agi
CI ⁻	27	120	42	123	19.000	cor
SO ₄ ⁼	65	196	50	53	2.700	sal
Ca ⁺²	57	199	34	86	400	1 p
Mg ⁺²	15	138	41	54	1.360	do
Na ⁺	142	49	125	159	10.500	uo
K ⁺	5	7	1	2	370	• Ess
Relações iônicas	Agua 1	Agua 2	Agua 3	Água 4	Água do mar	der
Na:K	28,4	7,2	162,3	76,4	28,4	Y WYYY
Mg:Ca	0,3	0,7	1,2	0,6	3,4	o b
Cl:Na	0,2	2,4	0,3	0,8	1,8	não
CI:K	5,4	17,6	54,5	59,1	51,4	AAAA
Ca:K	11,4	29,3	44,2	41,3	1,1	tão
Mg:K	3,0	20,3	53,2	26,0	3,7	ass
Desempenho	Agua 1	Agua 2	Agua 3	Água 4	Água do mar	
Sobrevivência (%)	78,4	77,6	78,6	76,4	84,6	
Peso médio final (g)	12,8	11,6	10,8	11,2	13,3	
Conversão alimentar	1,55	1,71	1,78	1,68	1,58	
Adaptado de Valenzuela Vol. 52, Nº1: 103-112, ab	•	2017. Revista d	e Biología Mari	na y Oceano	grafía	

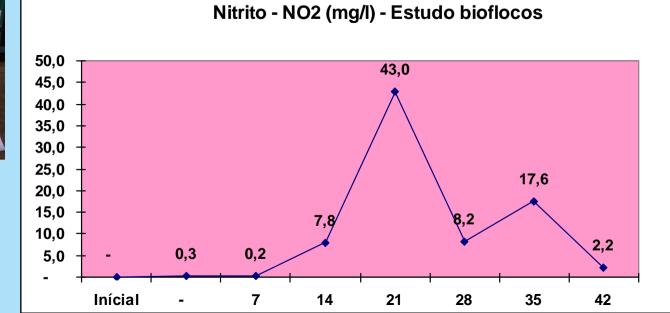
 Água de poços com baixa salinidade: 0,6 a 1 ppt vs água do mar 34 ppt.

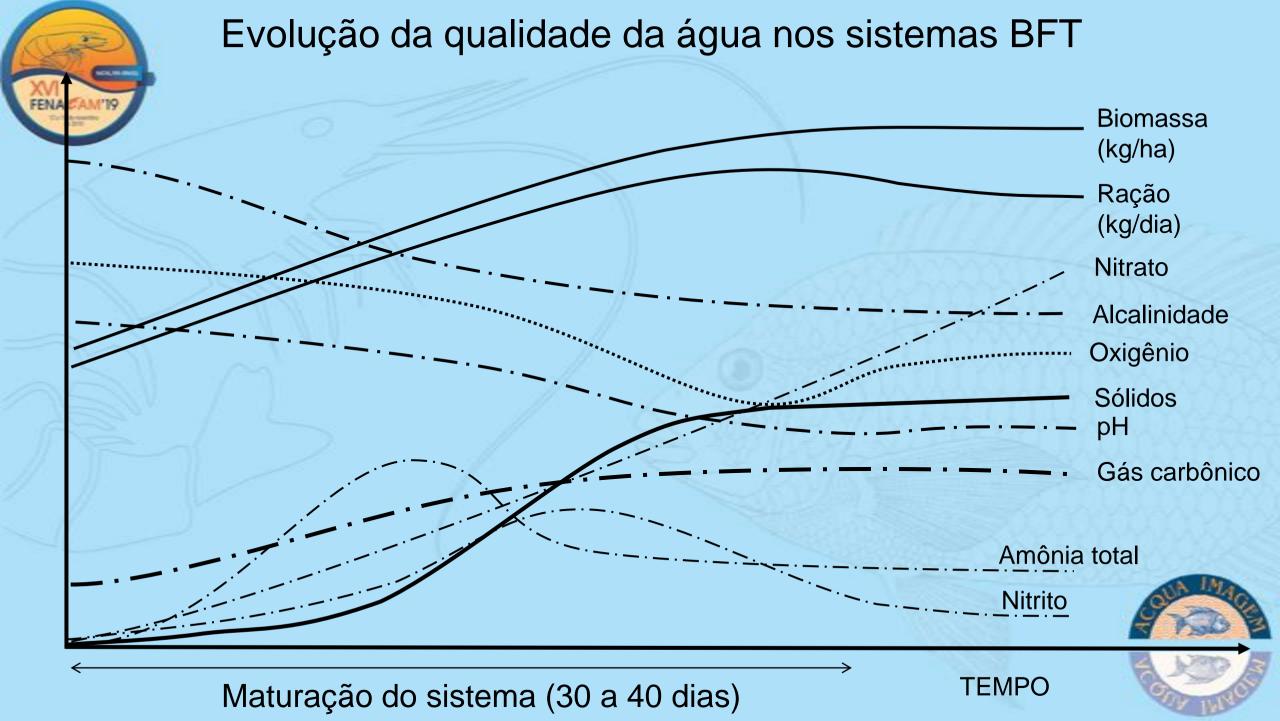
Esse estudo
demonstrou que
o balanço iônico
não precisa ser
tão rigoroso
assim.

Qualidade de água - Nitrito

- O nitrito é um metabólito nitrogenado altamente tóxico aos camarões, especialmente em águas de baixa salinidade.
- O nitrito se liga a hemocianina, comprometendo o transporte de oxigênio para os demais tecidos e órgãos do camarão.
- A elevação na concentração de cloretos na água reduz a toxidez do nitrito aos peixes e camarões.




Concentrações letais de nitrito (LC_{50} -96h mg/l de NO_2^- ou mg/l de $N-NO_2^-$) para o L. vannamei em função da salinidade (sal) ou concentração de cloretos (Cl^-) na água.


				Salinidade (ppt) ou íons cloreto (mg/l)	ou ions cloreto (5% da letal em mg/l		
Peso (g) NO ₂ N-N		N-NO ₂	Sal ou Cl ⁻	NO ₂	N-NO ₂	Referências	
	PL15-20 d	11	3,3	1 Sal (550 Cl ⁻)	< 0,6	< 0,17	Valencia-Castañeda et al (2018)
	PL15-20 d	16	4,9	3 Sal (1.650 Cl ⁻)	< 0,8	< 0,25	Valencia-Castañeda et al (2018)
	0,08 g	32	9,6	2 Sal (1.100 Cl ⁻)	< 1,6	< 0,50	Gross e Zilberg (2004)
	0,75 g	27	8	2 Sal (1.100 Cl ⁻)	< 1,4	< 0,4	Sowers et al (2004)
	0,75 g	47	14	5 Sal (2.750 Cl ⁻)	< 2,4	< 0,7	Sowers et al (2004)
	0,75 g	100	30	10 Sal (5.500 Cl ⁻)	< 5,0	< 1,5	Sowers et al (2004)
	4,4 g	19	5,7	0,6 Sal	< 1,0	< 0,3	Ramírez-Rochín et al 2017
	4,4 g	23	7,0	1 Sal (550 Cl ⁻)	< 1,2	< 0,4	Ramírez-Rochín et al 2017
	4,4 g	41	12,4	2 Sal (1.100 Cl ⁻)	< 2,0	< 0,6	Ramírez-Rochín et al 2017
	3,9 g	248	77	15 Sal (8.250 Cl ⁻)	< 12,4	< 3,9	Lin and Chen (2003)
	3,9 g	574	178	25 Sal (13.750 Cl ⁻)	< 28,7	< 8,9	Lin and Chen (2003)
	3,9 g	1.035	321	35 Sal (19.250 Cl ⁻)	< 51,8	< 16,1	Lin and Chen (2003)

Qualidade da água e maturação do sistema

Valores ideais e de atenção dos principais parâmetros de qualidade de água para *L. vannamei* em sistemas intensivos RAS e BFT com zero descarga de água.

Parâmetros	Ideal	Atenção	Como corrigir ou controlar
Temperatura	28 a 30ºC	< 25 ou >33ºC	
Variação diurna da temperatura	< 3 ºC	> 5 °C	Estufas / aquecedores de água
Oxigênio dissolvido (mg/l)	> 5,0	< 4,0	Aeração / Oxigenação
рН	8,0 a 8,5	< 7,5 ou > 9,0	Controlor microolago / tomo a a cuímico
Variação diurna do pH	< 1,0	> 1,5	Controlar microalgas / tampão químico.
Salinidade (ppt ou g/l)	> 5ppt	< 2 ppt	Adição de sal e balanço iônico adequado
Gás carbônio (mg/l)	< 5	> 15	Correção da alcalinidade total / aeração
Alcalinidade (mg CaCO ₃ /I)	> 150	< 75	
Dureza total (mg CaCO ₃ /l)	> 150	< 75	Correção com cal hidratada e outros.
Amônia tóxica – NH ₃ (mg/l)	< 0,1	> 0,2	Balanço C/N (BFT) / Filtros biológicos (RAS).
Nitrito – NO ₂ - (mg/l)	< 0,5	> 1,0	Condições ideais para bactérias heterotróficas.
Nitrato – NO ₃ - (mg/l)	< 100	> 200	Denitrificação / remoção por algas e plantas
Sólidos totais (mg/l)	< 400	> 500	Llea de decentadores / filtres macânicas
Sólidos decantáveis (cone)	< 10 ml/litro	> 30 ml/litro	Uso de decantadores / filtros mecânicos.

Eficiência no transporte de pós-larvas a longas distâncias

- Adicionadas dos fretes aéreos e terrestres, as PL's podem chegar aos projetos no interior do país a um custo de R\$ 23,00/mil.
- Com sobrevivências de 60 a 20%, as PL's adicionam R\$ 3,20 a 10,90/kg de camarão (10 g), algo muito expressivo no custo total.
- Portanto, é necessário ser eficiente no transporte das PL's.
- Um trabalho conjunto com a Aquatec permitiu acomodar 24 mil PL's por embalagem, viabilizando o transporte aéreo a longas distâncias.

Resultados do transporte de PL 8-10 de L. vannamei em sacos plásticos a diferentes cargas (trecho aéreo e terrestre, total de 16 a 17 horas), com temperatura inicial da água em 20ºC e sem tamponamento ou em água com temperatura inicial de 18ºC e tamponada para manter baixas as concentrações de gás carbônico ao longo do transporte.

Variáveis monitoradas	Sem tamponamento e 20°C			Com tamponamento e 18°C				
Temperatura inicial da água (°C)	20,0	20,0	20,0	20,0	18,0	18,0	18,0	18,0
pH inicial	8,19	8,19	8,19	8,19	9,50	9,54	9,56	9,56
Alcalinidade início (mg CaCO ₃ /I)	124	124	124	124	190	220	218	218
No. de PLs (15 litros de água)	8,5 mil	12 mil	16 mil	20 mil	20 mil	24 mil	30 mil	40 mil
Tempo total embalagem (h)	15:55	15:55	15:55	15:55	16:45	16:45	16:55	16:35
Temperatura na chegada (°C)	21,6	21,3	21,5	22,9	20,5	19,9	20,9	20,6
Oxigênio final (mg/l)	21,4	22,4	18,7	11,4	17,4	17,7	10,8	5,3
pH final	6,8	6,8	6,6	6,7	8,3	7,7	7,5	6,9
Gás carbônico final (mg/l)	28,0	28,0	38,0	52,0	0,0	6,0	6,0	16,0
Amônia total final (mg/l)	1,8	2,0	1,8	1,8	1,2	1,2	1,2	2,4
Amônia tóxica (NH ₃) final (mg/l)	0,007	0,008	0,005	0,005	0,072	0,060	0,048	0,014
Alcal. total final (mg CaCO ₃ /l)	150,0	138,0	138,0	159,0	210,0	230,0	240,0	260,0
Atividade das PLs na chegada	boa	boa	baixa	baixa	alta	alta	alta	baixa
Mortalidade na embalagem	NS	NS	5-10%	35-50%	NS	NS	NS	NS

O destino dos sólidos e águas residuais

- O reuso da água demanda controle dos sólidos decantadores / clarificadores
- Valor limite de sólidos decantáveis (cone) = 30 ml/l Adequado = 10 a 20 ml/l
- Oportunidades para uso dos sólidos

O destino dos sólidos e águas residuais

- Fertirrigação (limitado pela salinidade).
- Biodigestores (gás).
- Compostagem, desidratação e granulação.
- Farinha de flocos (18 a 28% PB).
- Probiótico de amplo espectro.

Considerações finais

- Análise criteriosa da viabilidade econômica com desafios.
- Atenção especial ao design e detalhes operacionais do projeto.
- Conhecimento técnico para monitorar e manter a qualidade da água.
- Eficiência e segurança no transporte de pós-larvas.
- Laboratórios locais em SRA's e com matrizes livre de patógenos.
- Com esses gargalos equacionados, o Brasil produzirá muito camarão em cultivos intensivos em áreas interiores e próximas à grandes centros de consumo.

20 ANOS

de serviços prestados à aquicultura no Brasil

Desde 1999 a Acqua Imagem desenvolve e transfere tecnologia e conhecimento para a aquicultura brasileira, contribuindo para o seu desenvolvimento sustentável.

www.acquaimagem.com.br

Obrigado e bom regresso aos lares.

Fernando Kubitza

ACQUA IMAGEM SERVIÇOS Tel: + 55 11 99952-7040 fernando@acquaimagem.com.br

