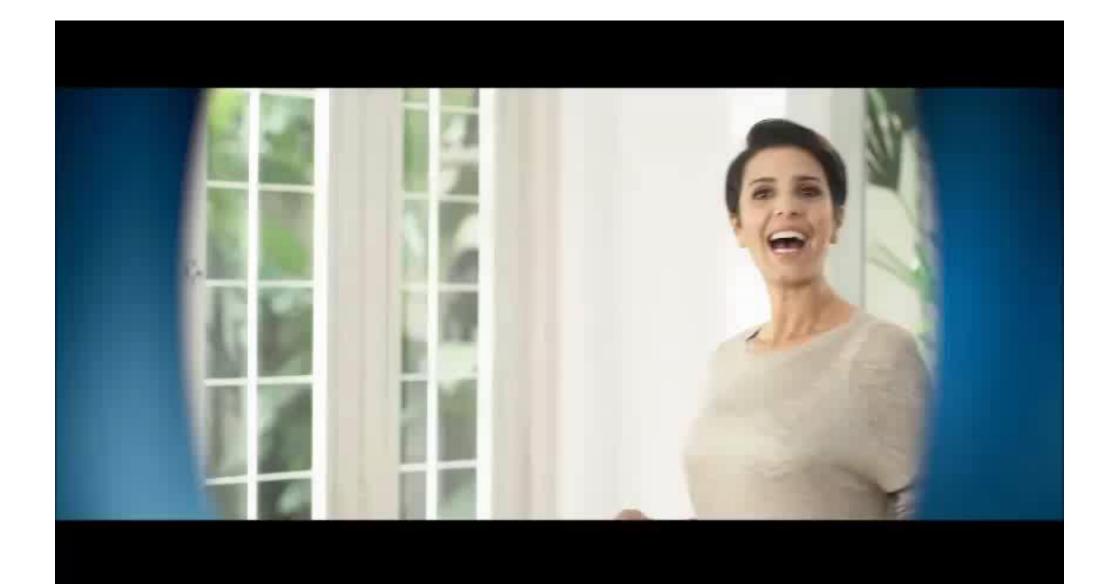
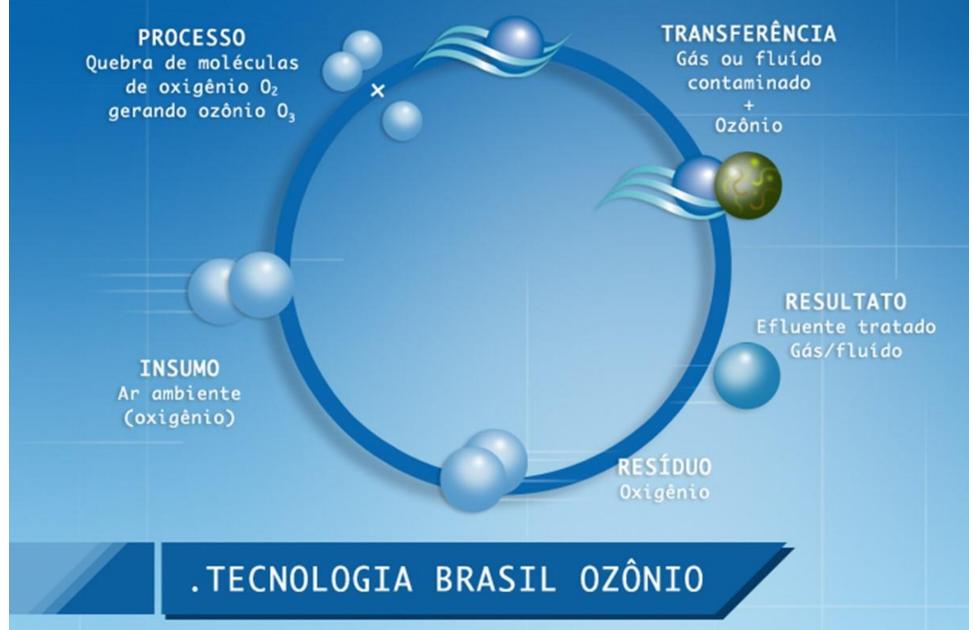


FENACAM 2018


13 a 16 de novembro 2018 Natal/RN


Tecnologia BrasilOzônio no tratamento da inativação microbiológica da água utilizada na produção de larvas, pós-larvas e juvenis do L. vannamei

SAMY MENASCE

VANTAGENS AMBIENTAIS E SOCIAIS

MAIS POTENTE germicida e oxidante existente.

GERAÇÃO No local da aplicação. CUSTO
OPERACIONAL
Próximo
a Zero.

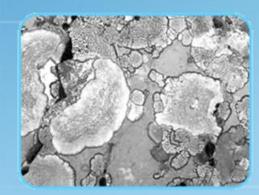
MATÉRIA-PRIMA Ar ambiente.

02

RESÍDUO Oxigênio não polui rios,lagos e atmosfera.

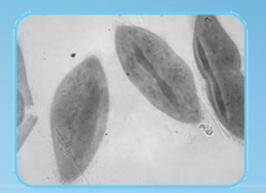
.TECNOLOGIA BRASIL OZÔNIO

ATIVIDADE ANTI-MICROBIANA



Mais potente germicida natural.

Elimina:


Bactérias

Fungos e Leveduras

Vírus

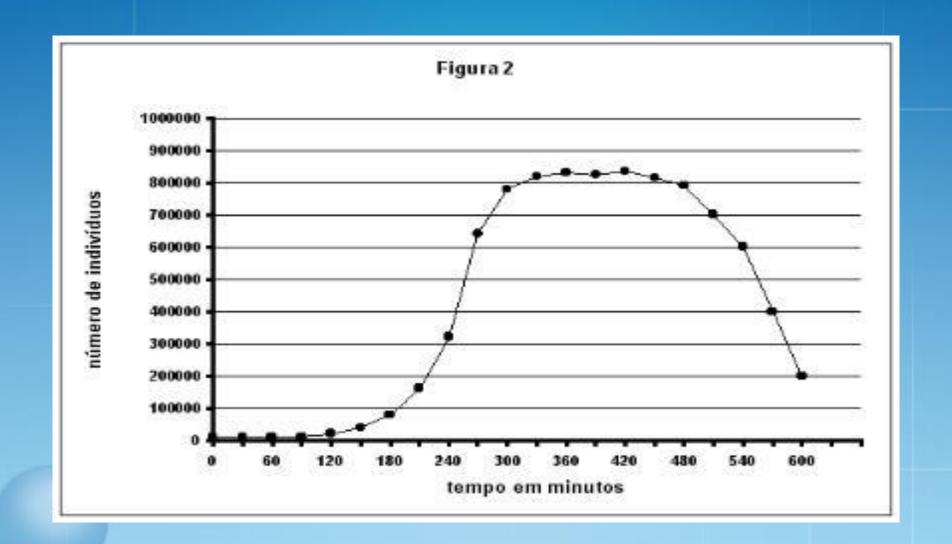
Protozoários

ORGANISMOS ENCONTRADOS NA ÁGUA DO MAR

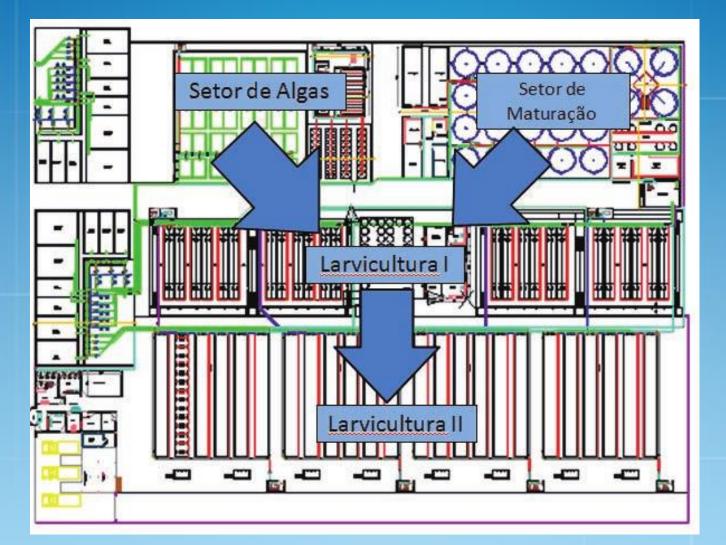
Larvas de peixe, moluscos, cnidários, microalgas, vírus e bactérias.

Presença de bactérias marinhas (VARIAÇÃO DE 1000 a 5,4 milhões de bactérias por litro de amostra). Dados da ANVISA, 2005.

ORGANISMOS ENCONTRADOS NO LITORAL BRASILEIRO


MICRORGANISMOS	%
Vibrios	31
Coliformes fecais	13
Escherichia coli	5
Enterococus fecais	22
Clostridium perfringens	15
Colifagos	29
Vibrio cholerae O1	7

CURVA DE CRESCIMENTO POPULACIONAL DE BACTÉRIAS



BrasilOzônio

ONDE APLICAR A TECNOLOGIA BRASIL OZÔNIO

- Inativação e controle microbiológica da água utilizada na produção de larvas, pós-larvas e juvenis.
- Desinfecção da água do mar e da água doce;
- Desinfecção das tubulações;
- Desinfecção dos Reservatórios;
- Desinfecção dos tanques e outros recipientes;
- Desinfecção dos Efluentes;
- Assepsia dos utensílios diversos.

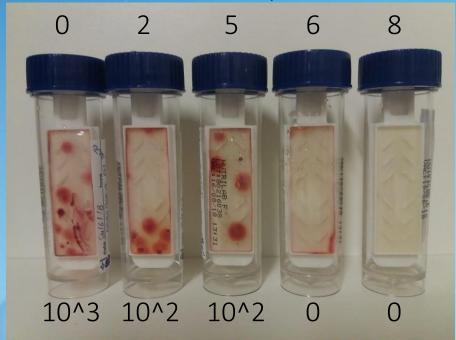
MONITOR A ÁGUA DE PRODUÇÃO NOS PARÂMETROS:

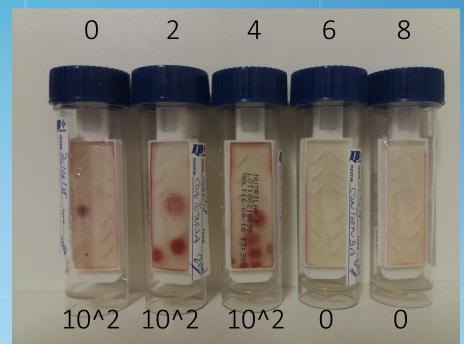
➡ Alcalinidade, Dureza, Amônia Tóxica, Nitrito, OD, pH, O₃ Residual, Bacteriologia, Balanço Iônico e Turbidez ou SST.

EFICIÊNCIA DO SISTEMA BRO3 NA INATIVAÇÃO MICROBIANA

10^4

ÁGUA DO MAR


COMPROVAÇÃO INATIVAÇÃO MICROBIOLÓGICA ATRAVÉS DA APLICAÇÃO DE OZÔNIO

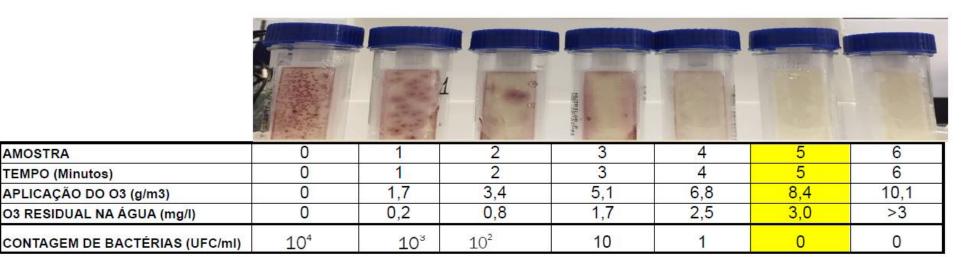

Pedra Grande/RN

10^2

0

10^2

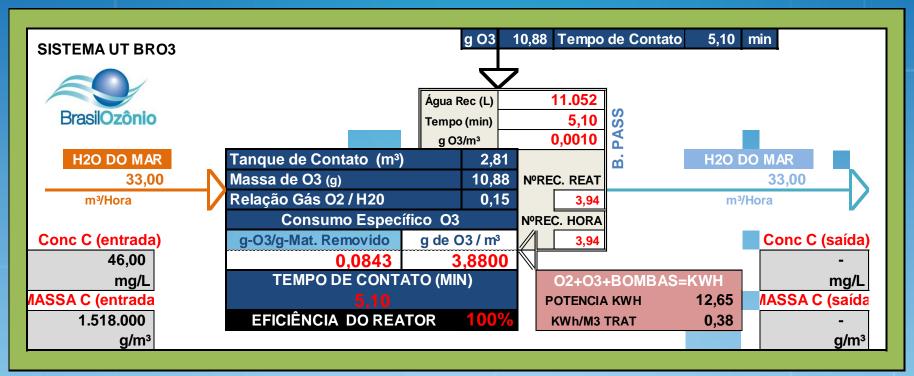
AMOSTRA


TEMPO (Minutos)

APLICAÇÃO DO O3 (g/m3)

ÁGUA DO MAR

COMPROVAÇÃO INATIVAÇÃO MICROBIOLÓGICA ATRAVÉS DA APLICAÇÃO DE OZÔNIO



ESPECIFICAÇÃO TÉCNICA DE PROJETO DIMENSIONAMENTO SISTEMA DE OZÔNIO

PARA TRATAR 33 m3/h

Redução de 99,99 % de Bactérias com 5:10 minutos de aplicação de ozônio, com 3,0 ppm de ozônio residual na água do mar. (condições da água do mar em 17/02/2017)



Projetos

FLUXOGRAMA UT BRO3

BRASIL OZÔNIO E CLIENTE

REDUÇÃO DE BACTÉRIAS E PROTOZOÁRIOS COM OZÔNIO

ÁGUA DO MAR

O3Img/L)	gde103/h	O3 RESIDUAL	BACTÉRIAS	BACTÉRIAST(CBSOUFC/OD,10ML	TOTAL	PROTOZOÁRIOS	PLACAS	TEMPO
Dosagem	50@m3/h	ppm	TSA	SACAR 3	SACAR	UFC7/10,11ml	numeros	col	min
		PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	47	63	37	147	Ausente		0
??????? 2,75	????? 37,50	77777777777 1,25	5	1	5	11	Ausente		1,5
?????? 5,50	7772 75,00	mmmm 1,75	0	0	0	0	Ausente		3
??????9,17	77774 58,33	??????????????????????????????????????	5	0	0	5	Ausente		5

Salinidade:

Ausência de protozoários na amostra.

Redução de 99,99 % de Bactérias com 3:0 minutos de aplicação de ozônio, com 1,75 ppm de ozônio residual na água da mistura.

REDUÇÃO DE BACTÉRIAS E PROTOZOÁRIOS COM OZÔNIO

ÁGUA DO POÇO

O3Img/L)	gdeD3/h	O3 RESIDUAL	BACTÉRIAS	BACTÉRIASTCBSTJFC/TD,1TML		TOTAL	PROTOZOÁRIOS	PLACAS	TEMPO
Dosagem	15@m3/h	ppm	TSA	SACAR ₃	SACAR	UFC7/10,11ml	Números	col	min
		PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	27	4	17	48	Presente		0
777	7777741,25	7777777777777777777777777777777777777	3	1	3	7	Ausente		1,5
777777 ,50	777778 2,50	77777777 1,35	0	0	0	0	Ausente		3
??????9,17	77772 37,50	777777777 1,75	0	0		0	Ausente		5

Salinidade:

- Ausência de protozoários se deu com 1:30 minutos de aplicação de Ozônio, com 0,5 ppm de ozônio residual na água da mistura.
- Redução de 99,99 % de Bactérias com 3:00 minutos de aplicação de ozônio, com 1,35 ppm de ozônio residual na água da mistura.

APLICAÇÃO DO OZÔNIO NA REDUÇÃO E CONTROLE DA CARGA MICROBIANA DENTRO DO TANQUE DA LARVICULTURA TQ C/10 DIAS

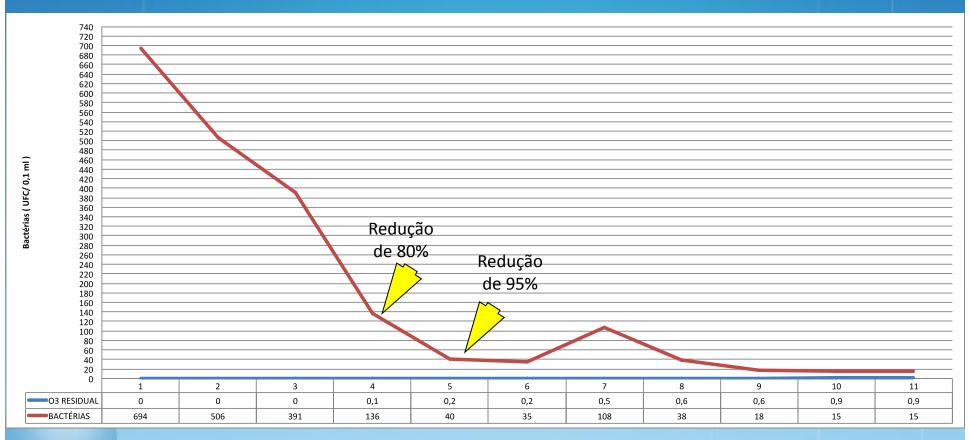
REDUÇÃO CONTROLADA DE BACTÉRIAS E PROTOZOÁRIOS COM OZÔNIO

O3Img/L)	gadea03/h	O3®RESIDUAL	BACTÉRIAS	BACTÉRIAS TO	CBS@UFC/@0,1@ML	TOTAL	PROTOZOÁRIOS	PLACAS®RO3	TEMPO	REMOÇÃO
Dosagem	503m3/h	ppm	TSA	SACAR∄	SACAR	UFC700,10ml	numeros	UFCI ∕ Iml	min	%
	ļ	0	136	558	0	694	Presente	}	0	0
7777777777777777777777777777777777777	77777714 5,83	0	158	348	0	506	Presente	}	0,5	27%
.83, <u>mmmm</u>	777779 1,67	0	122	269	0	391	Presente		1	44%
<i></i>	77,50	0,1	61	75	0	136	Ausente		1,5	80%
7777777777777777777777777777777777777	777777 83,33	0,2	24	15	1	40	Ausente	}	2	94%
.58 mmm4,58	777772 29,17	0,2	20	13	2	35	Ausente	}	2,5	95%
7777777777777777777777777777777777777	777772 75,00	0,5	20	85	3	108	Ausente	}	3	84%
77777778,42	777773 20,83	0,6	38	<1	0	38	Ausente		3,5	95%
33, Timmin	777773 66,67	0,6	14	4	0	18	Ausente		4	97%
777777778,25	777777 12,50	0,9	15	<1	0	15	Ausente		4,5	98%
????????),17	7777774 58,33	0,9	14	1	0	15	Ausente		5	98%
Calinidados	26	0/			<u> </u>	<u> </u>				

Salinidade: 26 %

Ausência de protozoários se deu com 1:30 minutos de aplicação de Ozônio.

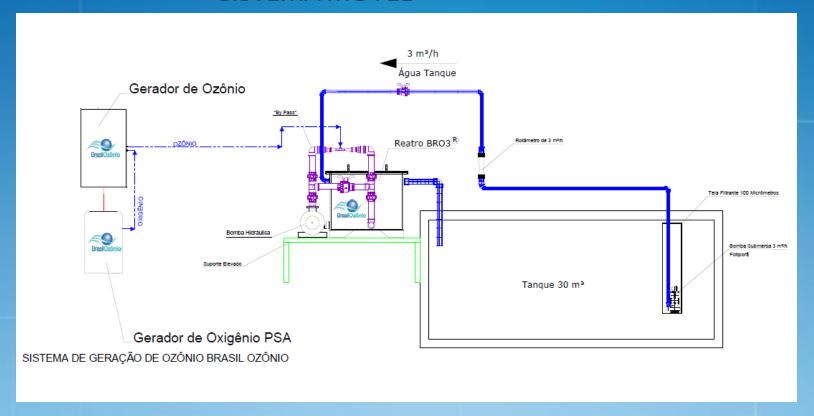
Redução de 95% de Bactérias com 2:30 minutos de aplicação de ozônio.


Desenvolvimento e Pesquisa

ANÁLISE GRAFICA

SETOR DA LARVICULTURA

Inativação de bactérias com ozônio (PL 10)



FLUXOGRAMA DO PROCESSO

BrasilOzônio

SISTEMA MÓVEL

- TELA PARA RETER OS NÁUPLIOS
- REDUÇÃO DE 95% DE MICRORGANISMOS EM 11 HORAS DE APLICAÇÃO
- NÃO HAVERÁ RESÍDUO DE OZÔNIO NA ÁGUA

Desenvolvimento e Pesquisa

EFICIÊNCIA ANTIMICROBIANA DE AGENTES DESINFETANTES A 5 °C.

Microrganismo	Eficiência antimicrobiana do desinfetante (mg.min/L)						
	Cloro livre	Cloraminas	Dióxido de cloro	Ozônio			
	(pH 6-7)	(pH 8-9)	(pH 6-7)	(pH 6-7)			
Escherichia coli	0,034-0,05	95-180	0,4-0,75	0,02			
Poliovírus ¹	1,1-2,5	770-3740	0,2-6,7	0,1-0,2			
Rotavírus	0,01-0,05	3810-6480	0,2-2,1	0,006-0,06			
Fago f2	0,08-0,18	-		-			
Cistos de Giárdia lamblia	47->150	-	-	0,5-0,6			
Cistos de Giardia muris	30-630	1400	7,2-18,5	1,8-2,0			

¹ Eficiência antimicrobiana (C.t), medida em função da concentração do desinfetante (C) e do tempo requerido para inativação (t) de 99% dos microrganismos

Fonte: Hooff (1987) apud Langlais, Reckhow e Brink (1991).

PORTARIA Nº 2.914

ÁGUA POTAVEL

§ 2º No caso da desinfecção com o uso de ozônio, deve ser observado o produto concentração e tempo de contato (CT) de 0,16 mg.min/L para temperatura média da água igual a 15º C.

COMPARAÇÃO DAS CARACTERÍSTICAS DOS PROCESSOS DE CLORAÇÃO E OZONIZAÇÃO.

Características	Cloração	Ozonização
Segurança	+	++
Remoção de bactérias	++	++
Remoção de vírus	+	++
Remoção de protozoários ¹		++
Residual tóxico	+++	+
Subprodutos	+++	+
Custos operacionais	+	++
Custos de investimento	++	+++

^{-,} nenhum; +, baixo; ++, médio; +++, alto.

Fonte: Lazarova, Savoye e Janex (1999).

¹ análise in vitro de *Cryptosporidium spp*.

CLIENTE: Posiposã

LARVICULTURA, ALGAS E MATURAÇÃO

CLIENTE: Poiporã

MATURAÇÃO/BERÇARIO

CLIENTE: Posiporã

LARVICULTURA

LAVAGEM DE TANQUES

LAVAGEM DE CAMINHÕES

Análises	Resultado
Mesófilos (UFC/g)	Ausente
Salmonella sp	Ausente

Análises	Resultado
Mesófilos (UFC/g)	Ausente
Salmonella sp	Ausente

ABRIDORA DE ABDOME EXTRATORA DE COLAR EVISCERADORA

DESINFECÇÃO GERAL DAS PAREDES E TETO DAS CÂMARAS FRIAS

Análises

Mesófilos (UFC/g)

Salmonella sp

Resultado

Ausente

Ausente

Análises	Resultado
Mesófilos (UFC/g)	Ausente
Salmonella sp	Ausente

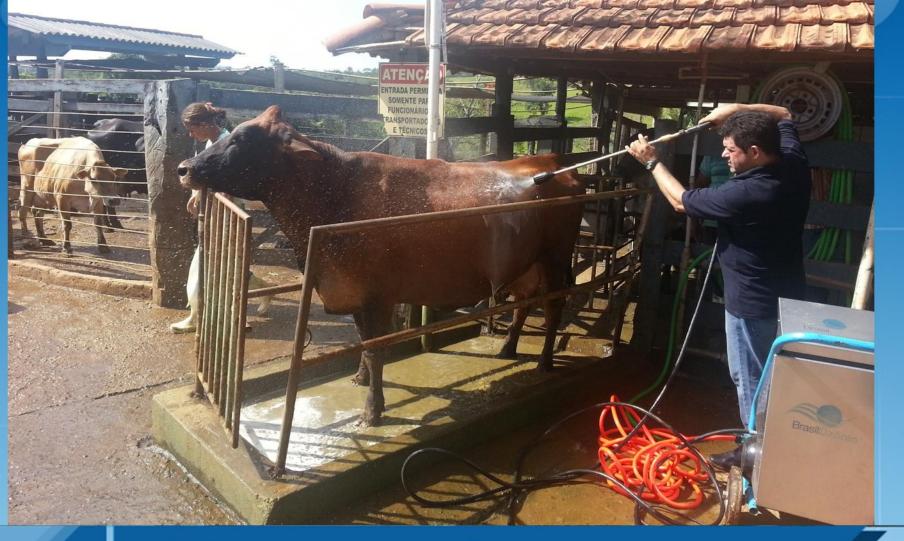
LAVAGEM DAS GAIOLAS

Análises	Resultado
Mesófilos (UFC/g)	Ausente
Salmonella sp	Ausente

HIGIENIZAÇÃO DE ALIMENTOS

.CASE SISTEMA DE GERAÇÃO E TRANSFERÊNCIA DE OZÔNIO ADAPTADO EM PULVERIZADOR AGRÍCOLA

PULVERIZAÇÃO ÁGUA OZONIZADA COMO OPÇÃO AO AGROTÓXICO


.CASE PULVERIZAÇÃO AGRICULTURA FAMILIAR

.CASE HIGIENIZAÇÃO DE ANIMAIS

.CASE HIGIENIZAÇÃO DE ANIMAIS

ELIMINAÇÃO CARRAPATO

CLIENTE: timbaúbas/a

HIGIENIZAÇÃO E SANITIZAÇÃO DE MANGAS

CLIENTE: timbaúbas/a

APLICAÇÃO DO O3 NA CÂMARA FRIA

O gás ozônio foi aplicado com o objetivo de reduzir a contaminação de fungos e bactérias no ar ambiente e superfícies dentro da câmera fria. Com isso, ocorreu a diminuição da carga microbiana e remoção do etileno no interior da câmara fria o que retarda o amadurecimento, aumentando o tempo de vida útil do produto.

INJEÇÃO OZÔNIO - CÂMARAS FRIAS

TRATAMENTO DE ÁGUA

SOLUÇÃO BRASILOZÔNIO PARA TRATAMENTO DE ÁGUA EM COMUNIDADES CARENTES NO ESTADO DO CEARÁ

No intuito de prospectar novas possibilidades de que inovações tecnológicas promovam o acesso à água e saneamento para comunidades urbanas e rurais de baixa renda, a WTT (World-Transforming Technologies) e a Fundação Avina identificaram o sistema BRO3 desenvolvido pela Brasil Ozônio como uma solução de alto potencial de impacto econômico e social pela sua abrangência de tratamento, flexibilidade, eficiência, simplicidade e baixo custo operacional.

World-Transforming Technologies

TRATAMENTO DE ÁGUA

SOLUÇÃO BRASILOZÔNIO PARA TRATAMENTO DE ÁGUA EM COMUNIDADES CARENTES NO ESTADO DO CEARÁ

ANTES DO DEPOIS DO OZÔNIO OZÔNIO

Instituto Coca-Cola Brasil • Sua sede move a nossa • Café Leão • Vídeos • Coca-Cola com Stevia e 50% menos açúcares

INSTITUTO COCA-COLA BRASIL

Tecnologia de baixo custo tem potencial para levar água potável a comunidades rurais e urbanas

Coca-Cola Brasil | 21/3/2017

f Curtir 114 pessoas curtiram isso. Cadastre-se para ver do que seus amigos gostam.

Moradora de Coqueiro, Sara de Freitas Andrade paga R\$ 18 por mês para ter água encanada, mas não a utiliza sequer para tomar banho (Crédito: Wander Roberto)

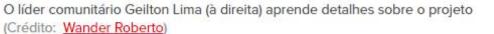
Coqueiro é uma comunidade rural em Caucaia, no semiárido cearense (Crédito: Wander Roberto)

INSTITUTO COCA-COLA BRASIL

Tecnologia de baixo custo tem potencial para levar água potável a comunidades rurais e urbanas

Coca-Cola Brasil | 21/3/2017

114 pessoas curtiram isso. Cadastre-se para



.CASE TRATAMENTO ÁGUA DE POÇO

.CASE TRATAMENTO ÁGUA DE POÇO

CLIENTE: Dow

.CASE TRATAMENTO ÁGUA DE CHUVA

CLIENTE: McDonald's

.CASE TRATAMENTO ÁGUA DE CHUVA

CLIENTE: UNISINOS

.CASE TRATAMENTO DE EFLUENTES-REÚSO

CLIENTE: ACRILEX

.CASE TRATAMENTO DE EFLUENTES-REÚSO

TRATAMENTO DE EFLUENTES - REUSO

Efluente APÓS aplicação de ozônio

CLIENTE: Dow

Aplicação de ozônio em efluente industrial contendo fenol

Vazão: 25m³/h

Amostra	Fenol mg/L
Hot Well Bruto	9,8
Hot Well Após Ozônio	2,17

.CASE TRATAMENTO DE EFLUENTE

CLIENTE: MONSANTO

.CASE TRATAMENTO DE EFLUENTES

ÁGUA E SOLO CONTAMINADOS COM METAIS PESADOS - INB

- 2,4 milhões de m³ de água;
- 1,9 milhões de m³ de solo;
- 700 anos de recuperação;
- Projeto FUNTEC BNDES.

ÁGUA CONTAMINADA COM METAIS PESADOS - INB

ÁGUA CONTAMINADA COM METAIS PESADOS - INB

ÁGUA CONTAMINADA COM METAIS PESADOS - INB

DAM MINAS DE CARVÃO

CRICIUMA/SC

ELIMINAÇÃO DE PRAGAS - MEXILHÃO DOURADO USINA AES - BARIRI

ELIMINAÇÃO DE PRAGAS - MEXILHÃO DOURADO USINA AES - BARIRI

ELIMINAÇÃO DE PRAGAS - MEXILHÃO DOURADO USINA AES - BARIRI

PURIFICAÇÃO DE ÁGUA PARA FABRICAÇÃO DE MEDICAMENTOS

- Esterilização da água em níveis não atingíveis por outros processos de tratamento;
- Maximização da segurança de não contaminação dos produtos finais (medicamentos);
- Único processo conhecido sem geração de resíduo pelo fato do ozônio se transformar espontaneamente em oxigênio.

Sistema BRO3-PLUS

CLIENTES

CLIENTE:

FERTILIZANTES

CLIENTE: SEARA

.CASE TRATAMENTO DE GASES

RAÇÃO ANIMAL

CLIENTE: Autometal

.CASE TRATAMENTO DE GASES

SOLVENTE SALA PINTURA

CLIENTE: ambev

.CASE TRATAMENTO DE GASES

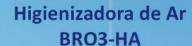
ACETATO GRÁFICA RÓTULOS

CLIENTE: Loga

.CASE TRATAMENTO DE GASES

LIXO HOSPITALAR

HIGIENIZAÇÃO DE AMBIENTES


- Higieniza e Desodoriza o ar sem a necessidade de produtos químicos;
- Ação direta que elimina vírus, micróbios, fungos e odores como cigarro e mofo;
- Elimina ácaros em tapetes, carpetes,
 cortinas e sistema de ar condicionado;
- Carrinho prático que facilita a movimentação e aplicação;
- Sistema automatizado, comandado externamente ao ambiente a ser higienizado. Baixíssimo consumo de energia.

ESTERILIZADORA OZÔNIO

MATERIAIS CIRÚRGICOS

- Esteriliza materiais, instrumentos e próteses cirúrgicas e hospitalares, eliminando bactérias, fungos, vírus e protozoários;
- Trabalha com baixas pressões, risco de explosão é inexistente;
- Trabalha com temperatura ambiente;
- Consome menos de 10% da energia de uma autoclave convencional à vapor;
- Possui como matéria prima o Ar Ambiente,
 não necessitando a reposição de insumos;
- Não gera resíduos;
- Fácil operação, totalmente automatizada.

GERADOR DE OZÔNIO OZONIOTERAPIA Modelo: BRO3-80M

- Dimensões: 500 x 340 x 210 mm
- > Estrutura: polietileno
- > Acabamento interno: carpete/espuma
- > Fácil manuseio
- Portátil
- ➢ Garantia 1 ano
- Manutenção e assistência técnica
- > Alimentação automática: 110 / 220V

Preenchimento bag com O₃

Ozonização de azeite

- Concentração do ozônio: de 05 a 80 μg/mL
- > Regulagem de fluxo e pressão automáticos
- > Sistema de vácuo
- ➤ Sistema de injeção de O₃ com opções particionado e constante
- > Gás Ozônio: controle e destruição de residual automáticos
- > Oxigênio: pressão 1,5 e 3,5 kgf/cm²; fluxo 0,7 LPM
- Resfriamento: ventilação interna ar ambiente
- > Teclas de comando: acionadas via micro controladores

Ozonização de água

ANVISA

Prezado senhor Samy,

Em resposta a sua solicitação, informamos que a demanda que recebemos anteriormente que citei na reunião do dia 06/02/09 foi sobre o uso de ozônio para tratamento antimicrobiano (redução da carga microbiológica) em alimentos. Assim, informamos que:

De acordo com o Ministério da Agricultura, Pecuária e Abastecimento - MAPA, o equipamento para aplicação de ozônio em alimentos não necessita receber "Autorização de Uso" e não há restrições quanto à sua instalação nos estabelecimentos que estão sob a égide do Serviço de Inspeção Federal.

Conforme a Gerência de Tecnologias e Produtos para Saúde/ ANVISA, os aparelhos purificadores de ar não necessitam de qualquer autorização desta Agência para a sua fabricação, importação, exposição à venda ou entrega ao consumo.

De acordo com o Instituto Adolfo Lutz, não há metodologia analítica conhecida para detecção e quantificação de ozônio residual em alimentos, e que este gás está presente na atmosfera, não sendo residual, pois é instável e dissipa-se por si próprio.

Diante do exposto, informamos que não se faz necessário publicar uma Resolução RDC ANVISA para autorizar o uso do equipamento em questão, o qual produz ozônio para manipulação de alimentos.

Atenciosamente, Equipe Técnica Gerência de Ações de Ciência e Tecnologia de Alimentos GACTA/GGALI/ANVISA

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO GABINETE DO MINISTRO INSTRUÇÃO NORMATIVA № 2, DE 3 DE JANEIRO DE 2008

O MINISTRO DE ESTADO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO, no uso da atribuição que lhe confere o art. 41, do Decreto nº 86.765, resolve:

- VI o sistema de oxidação de agrotóxicos da água de lavagem das aeronaves agrícolas deverá conter:
 - a) sistema de bombeamento, para a retirada da água de lavagem das aeronaves do reservatório de decantação e enviada ao reservatório de oxidação;
 - b) ozonizador com capacidade mínima de produzir um grama de ozônio por hora;
 - c) reservatório para oxidação que deverá ter capacidade mínima de quinhentos litros, ser em Poli Cloreto de Vinila (PVC), para que não ocorra reação com o **ozônio**, ser redonda para facilitar a circulação da água de lavagem, com tampa para evitar contato com a água de lavagem; e
 - d) as canalizações deverão ser em tubo PVC, para que não ocorra reação com o **ozônio**, e com diâmetro de cinqüenta milímetros;
- VII o ozonizador previsto na alínea b, do inciso anterior, deverá funcionar por um período mínimo de seis horas, para cada carga de quatrocentos e cinqüenta litros de restos e sobras de agrotóxicos remanescentes da lavagem e limpeza das aeronaves e equipamentos;
- VIII dentro do reservatório de oxidação, deverá ser instalada a saída do **ozonizador**, na sua parte inferior, para favorecer a circulação total e permanente da água de lavagem e com dreno de saída na parte superior do reservatório de oxidação.

Fazenda Guimarães

OZÔNIO E A FDA

Code of Federal Regulations 21, part 173, efetivo 26/6/01:

"O Ozônio pode ser usado de modo seguro no tratamento, armazenamento e processamento de alimentos (incluindo carnes e aves) e produtos agrícolas crus, de acordo c/ as seguintes condições":

UNIDADE MÓVEL DE PRODUÇÃO E TESTES

Principais Clientes

covolan

Olin

Eurofarma

Dow

Damm

WWW.BRASILOZONIO.COM.BR