

Loc Tran

Loc is founder and director of ShrimpVet Laboratory in Vietnam. He leads a team of more than 70 researchers in shrimp health management, focusing on genetics, breeding and seed production, diagnostics and disease management,

FOUNDER & DIRECTOR and farming technologies. He has a Ph.D. in aquaculture SHRIMPVET pathology from the University of Arizona, where he studied LABORATORY under renowned aquaculture pathologist Don Lightner.

Science in Shrimp Farming and Recent Innovations in Hatchery and Production Systems in Vietnam

Loc Tran, Ph.D.

ShrimpVet Laboratory, Ho Chi Minh City, Vietnam

thuuloc@email.arizona.edu

Some Recent Updates

- Asian shrimp production in 2017-2018:
 - Increasing; prices plunged (second quarter).
- Major challenges:
 - EMS/AHPND, WSSV, EHP, White Feces Disease, SHIV?
 - Antibiotics residue.

Back to the Old School EMS/AHPND

Gross signs of EMS/AHPND affected Penaeus vannamei.

- ✓ A and B display a pale, atrophied hepatopancreas (HP), and an empty stomach (ST) and midgut (MG).
- ✓ C and D show a normal size HP with dark orange color, and a full stomach and midgut.

+

+

+

BROOD STOCK FECES

BROOD STOCK FECES

POSITIVE CONTROL

LADDER

9

10

SHRIMPVET

MOTE

DNA

Enterocytozoon hepatopenaei

100bp

10

LADDER

150bp

WELL	SAMPLE	Enterocytozoon hepatopenaei	NOTE
	NEC ATTIVE CONTEND OF		

WELL	SAMPLE	Enterocytozoon hepatopenaei	NOTE
1	NEGATIVE CONTROL	-	
2	BLOOD WORM 1	+	
3	RLOOD WORM 2	_	

+

+ **BROOD STOCK MATURATION** +

BROOD STOCK AT QUARANTINE

GROW OUT SHRIMP +

DNA

POSITIVE CONTROL 9 + Enterocytozoon hepatopenaei

Horizontal Transmission

 Negative control (SPF shrimp) after 45 DOC)

 EHP-challenged shrimp after 45 DOC)

Warning?

Good PLs (Penaeus vannamei)?

- 1. Have to be clean of OIE-listed diseases (usually not an issue).
- 2. Have to be clean of EMS/AHPND and EHP (most important).
- 3. Antibiotics-free hatchery protocol.
- 4. Size variation (CV < 12%).
- 5. ADG: minimum at 0.3 g/day to reach breakeven point.

What Can We Do About It?

Transmission from hatcheries:

- 1. Better biosecurity.
- 2. Check all inputs and outputs (broodstock, fresh feed, nauplii, water, and PLs).
- 3. Diseases of concern: EMS/AHPND, EHP, WSSV.

How to Control EMS/AHPND and EHP in Hatcheries?

- ⇒ PCR screening (enriched fresh samples): broodstock feces, live feeds, nauplii, PLs).
- ⇒ Freezing live feeds before feeding alternatives for live feeds are desperately needed.
- ⇒ Impossible to keep the hatchery sterile need to use probiotics to out compete Vibrios.
- ⇒ Biosecurity and microbiota balance in larval rearing are the two keys to keep PLs clean.

How to Achieve a Healthy "Microbiota Balance"

Figure 3. Typical pattern of Total Vibrio bacteria growth in larval tanks within shrimp hatcheries.

Some Facts About Bioremediation / Probiotics vs. Vibrio

How to Fix This?

How to Manage EMS/AHPND and WFD at the Farm Level

- 1. Clean PLs (checked for EMS/AHPND, EHP, WSSV).
- 2. Clean pond Clean water Clean PLs.
- 3. Go back to the concept of "Microbiota Balance."
- 4. Waste management: siphoning, probiotics, RAS, bioflocs, etc.
- 5. Probiotics consistently in feed and in water.
- 6. Nursery.
- 7. Functional diets.

Nursery

- $1000 5000 \text{ PLs/m}^3$.
- 20-30 days.
- Harvest at 0.8-1.2 grams.
- Reduce risks (shorten the culture period), reduce cost.
- Faster rotation of the shrimp ponds.

Facts and Solutions

- The Bad: obligate pathogens The Good: probiotics The Ugly: opportunistic.
- The Bad/Ugly proliferate a lot faster than the Good.
- The Bad USUALLY WINs in 1 vs. 1 combat vs. the Good.
- Probiotics/Bioremediation is **never** the remedy for bacterial diseases, but it is a powerful **tool!**
- How to provide some advantages to the Good?
- => Give the Good a jump start (10⁴⁻⁵ CFU/mL inoculation), daily application (at 10⁴⁻⁵ CFU/mL) continuously. This has to be done BEFORE STOCKING.
- => No providing the Bad/Ugly with what they need (nutrient, inoculation, etc.).
- => Rule of Thumb: always have the Good at a proportion of at least **100/1** to the Ugly/Bad. If not, correct it.

Fermentation of Feed Ingredients?

Feeding shrimp with fermented corn/soybean?

- Disrupt nutrients needed for Vibrio.
- "Flush out" Vibrios in the shrimp gut.
- Provide an abundance of probiotics community.

Functional Diets? How to Translate Lab Trial to Pond Trial

Functional Diets?

A Pond Trial with a Functional Diet

- Location: Dong Nai, Vietnam.
- Duration: Dec-2017 March-2018.
- DOC: 100 -- 70 days of grow out, plus 30 days of nursery.

Treatment	Contro	l (T1)	Treatment (T2)		
Pond designation	Pond#1 Pond#3		Pond#2	Pond#4	
	(T1-1)	(T1-2)	(T2-1)	(T2-2)	
Area (m²)	2350	2380	2420	2180	
Feed	Cont	trol	Functional diet		
Administration method	-		Incorporated in feed		
			ingredients		
No. shrimp stocked	117,500	119,000	121,000	109,000	
Density (pcs/m²)	50	50	50	50	

Disease Diagnostics Using Routine Histology and PCR Methods

Week		1		2		3		4		
Ctrl. T1-1		HIS	WFD (G1-3)	WFD (G1)	_		WFD (G1)		WFD (G1-3)	
		PCR	<u>-</u>		-		-		EMS	
Ctrl.	T1-2	HIS	WFD (G1-3)	WFD (G1-3)	_		WFD (G1)		EMS (G3)	WFD (G1-4)
		PCR	-		_		-			-
Treatment	T2-1	HIS	WFD (G1-3)	WFD (G1)	WFD (G1)		WFD (G1-2)		WFD (G1-2)	
		PCR	-				-			-
Treatment	T2-2	HIS	WFD (G1-3)	WFD (G1-2)	EMS (G1-3)	WFD (G1)	EMS (G1)	WFD (G1-2)	EMS (G1-2)	WFD (G1)
		PCR	-		-		_		EN	ИS

Disease Diagnostics Using Routine Histology and PCR Methods

Week			5	6	7			8	
Ctrl.	T1-1	HIS	EMS (G2) WFD (G1)	EMS (G1-4) WFD (G2)	EMS (G1-3)	WFD (G3) EHP (G1)	EMS (G1-3)	WFD (G1-4) EHP (G1)	
		PCR	ЕНР	-		ЕНР		-	
Ctrl. T1-2		HIS	WFD (G1-2) WFD (G2-3)		EMS (G1-2) WFD (G1-2)		EMS (G1-3)	WFD (G1-2)	
		PCR	-	-		ЕНР	EMS	ЕНР	
Treatment	T2-1	ніs Т2-1	-	WFD (G1-3)		WFD (G1)		WFD (G2-3)	
		PCR	-	-		-		-	
Treatment	T2-2	HIS	EMS (G1) WFD (G1-2)	EMS (G1) WFD (G2- 3)	EMS (G2)	WFD (G2)	EMS (G1)	WFD (G1-3)	
		PCR	-	EMS		-		-	

Growth Performance, FCR and Survival in Ponds

Parameters	Ctrl. T1-1 Ctrl. T1-2 (Band 1) (Band 3)		T 2-1	T2-1	
	(Pond 1)	(Pond 3)	(Pond 2)	(Pond 4)	
Initial weight (g)	$1.14 \pm 0.03a$	$1.14 \pm 0.03a$	$1.14 \pm 0.03a$	$1.14 \pm 0.03a$	
Final weight (g)	17.30 ± 2.95	18.63 ± 3.21	23.77 ± 2.85	19.32 ± 3.85	
Weight gain (g)	16.10 ^c	16.72 ^c	22.12 ^a	18.86 ^b	
ADG (g/day)	0.22	0.24	0.31	0.25	
Survival rate	75.30%	86.85%	96.44%	78.03%	
FCR	1.60	1.38	1.20	1.40	

Take Home Messages

- \Rightarrow Biosecurity is a **MUST.**
- ⇒ Keeping a healthy microbiota balance is a **MUST.**
- ⇒ Probiotics/bioremediation is a TOOL Probiotics need a jump start.
- ⇒ Functional diets have big potential.
- ⇒ **Antibiotics-free** hatchery and growout protocol are both achievable.
- ⇒ Make shrimp farming more science-based, more predictable, simple, and more **cost effective**.

