

XIV FENACAM 15 DE NOVEMBRO DE 2017 CENTRO DE CONVENÇÕES DE NATAL

An update on research using nutrition to improve health in aquaculture

Xavier Cordoba DVM

Animal Nutrition Director, Bioiberica S.A.U.

"Let food be the medicine"

Hipocrates from Cos

Introduction:

- World aquaculture production continues to grow and now provides half of all fish for human consumption
- How will we be able to feed **9+ billion people in 2050??** → <u>Role of aquaculture</u>

Source: A.Obach CNA Ponencia Inaugural AOB Sept 2017 final

• Current <u>CHALLENGES</u>:

Adverse climate conditions Globalization of pathologies Tendency to 个seeding densities Prohibition of growth promoters Variations in cost of raw materials for diets

• Some of major lines of recent development in the AQUACULTURE industry:

Improved genetics Increased knowledge on biology and handling Improved facilities and Advances in NUTRITION

> Design diets and **nutritional strategies** which have a positive effect on animal **HEALTH**

Using NUTRITION to improve Immune and Digestive Health

AGENDA

- 1. What do we do at Bioiberica?
- 2. SOLUTIONS FOR AQUACULTURE:

• Dietary nucleotides

- Hydrolysed protein (bioactive peptides)
- 3. Scientific Evidences
- 4. A look to the future

Use NUTRITION to improve IMMUNE and DIGESTIVE Health

DIETARY NUCLEOTIDES

2 BIOACTIVE PEPTIDES

NUCLEOFORCE

PROMOTE GROWTH, IMPROVE IMMUNE & GI HEALTH AND SURVIVAL RATE ↑ PRODUCTIVITY IMPROVE INTESTINAL HEALTH, DIGESTIBILITY AND PALATABILITY

PALBIN

The CONCEPT:

Dietary NUCLEOTIDES

Structure:

- > NUCLEOBASE (nitrogenous base)
- FIVE-CARBON SUGAR (ribose/desoxyribose)
- > 1 or more PHOSPHATE GROUPS

Purine Nucleotides (ATP, GTP, IMP) Pyrimidine Nucleotides (UTP, CTP, TMP)

> **Commonly are confused with Protein** because both molecules has Nitrogen

Dietary NUCLEOTIDES

NUCLEOTIDES in **pediatric nutrition**:

1980s: Epidemiological studies:

Breastfed babies less diarrhea episodes than those fed with processed milk The difference between *breast milk* (human) and *formulated milk* (cow): <u>NUCLEOTIDES</u> →Addition of nucleotides to infant formulations

1991:

EU Scientific Committee on Food: Nucleotides included in the recommendations of **infant formulas**

Dietary NUCLEOTIDES

Bioiberica decided to extrapolate to other species ...but NUCLEOTIDE PROFILES ARE **SPECIES-SPECIFIC!**

OUR APPROACH: Tailor-made products

OUR APPROACH: Tailor-made products for AQUACULTURE

Nucleotides considered semiessential nutrients

Aquatic species show a faster growth compared to terrestrial species

Aquatic species have been recently domesticated, so they are more sensitive to stress

Use of vegetable proteins causes intestinal damage that should be repaired quickly to avoid production losses

Scientific data: Nucleoforce in the LAB

28/3

Protective effect of nucleotides against membrane permeability increase caused by enterogenic E.Coli ETEC K88 on IPEC-1 cells. JOURNAL OF TOXICOLOGY, ROSELLI ET AL. 2007

Scientific data: Nucleoforce in the LAB

Nucleotides reduce the expression of the protein P53. LIVESTOCK SCIENCE, GODLEWSKY ET AL, 2009

Effects of dietary nucleotides (Nucleoforce Shrimps™) on survival of *Litopenaeus vannamei* CENAIM RESEARCH CENTER, ESPOL, ECUADOR, 2014

Objective: evaluate effects of 2 diets on growth performance and health status of *L. vannamei*

Treatments: 1,000 animals initially PL27

- Treatment 1: supplementation 500 ppm NF SHRIMPS™
- Treatment 2: no supplementation (Control) (5 replicates per treatment)

Methods:

Growth Stage: 0.02 g - 4 weeks of life 5 tanks of 500 L with 500 Shrimps per treatment

Parameters:

growth, survival rate, biomass

Effects of dietary nucleotides (Nucleoforce Shrimps[™]) on survival of *Litopenaeus vannamei* CENAIM RESEARCH CENTER, ESPOL, ECUADOR, 2014

Results after 4 weeks:

Conclusion:

Inclusion of 500 ppm of *Nucleforce Shrimps*[™] had a positive effect on **survival rate** of *L. vannamei*

Effects of dietary nucleotides (Nucleoforce Shrimps[™]) on survival of *Litopenaeus vannamei* infected with White spot syndrome virus (WSSV) CENAIM RESEARCH CENTER, ESPOL, ECUADOR, 2014

Objective: Determine the effect of Nucleoforce Shrimps[™] inclusion on the diet of shrimps (*Litopenaeus vannamei*) on its performance and survival rate when exposed to **White Spot Disease**

Treatments:

- Group 1: supplementation 500 ppm NF SHRIMPS™
- Group 2: no supplementation (Control)

Methods:

- Growing Period: 1000 animals of 0.02 g until 3.5 gr 500 animals per treatment, 5 replicates per treatment of 100 animals in 500L tanks
- Infection Period: Selection of 200 animals, 100 animals per treatment, 10 replicates of 10 animals per treatment in 40L tanks.

Data Collection: Mortality at 9 days after the infection

Effects of dietary nucleotides (Nucleoforce Shrimps[™]) on survival of *Litopenaeus vannamei* infected with White spot syndrome virus (WSSV) CENAIM RESEARCH CENTER, ESPOL, ECUADOR, 2014

Results:

Conclusion:

500 ppm of Nucleoforce[™] in the feed had a positive effect on the survival rate of *L. Vannamei* during the growing period and reduced the mortality when shrimps were infected with WSSV

Immunity and growth performance of giant tiger prawn (*Penaeus Monodon*) after administration of dietary nucleotides Visayas State University. THE PHILIPPINES, 2009

Objectives: Determine effects of NF Shrimps[™] administration to giant tiger prawn in pond conditions

Parameters:

- Immune system: haemocyte count
- Growth
- Survival rate

Results:

- Significantly increased haemocyte count after 10 weeks
- Nucleoforce[®] inclusion significantly enhanced the proportion of granulocytes, semigranulocytes and hyalinocytes in the shrimp haemolymph

Total Haemocyte Count (n x 106 cells/mL) P<0,01

Control 250ppm 500ppm

Immunity and growth performance of giant tiger prawn (*Penaeus Monodon*) after administration of dietary nucleotides Visayas State University. THE PHILIPPINES, 2009

Results:

Increased survival rate: 500 ppm and 1000 ppm of *Nucleoforce*[™] significantly improved survival rate during the early stage of the prawns

	AVERAGE SURVIVAL RATE (%)								
DOSAGE	Wk1	Wk2	Wk3	Wk4	Wk5	Wk6	Wk7	Wk8	
Control	94.82	92.59b	91.11b	88.89	82.96	82.96	80.00	77.78	
250 ppm	96.29	95.56ab	94.81ab	91.85	87.41	87.41	86.67	85.19	
500 ppm	98.52	98.52a	97.03a	94.81	89.63	89.63	88.89	87.41	
750 ppm	98.52	98.52a	98.52a	96.29	87.41	87.41	85.93	83.70	
1000 ppm	98.52	98.52a	98.52a	97.78	95.56	95.56	94.07	93.33	

Immunity and growth performance of giant tiger prawn (*Penaeus Monodon*) after administration of dietary nucleotide supplementation

Visayas State University. THE PHILIPPINES, 2009

Results:

Increased growth

	Nucleoforce™					
Weeks	Control	250ppm	500ppm			
1	20,7	22,6	23,2			
2	33,5	33,2	36,9			
3	46,3	49,2	50,2			
4	55,6	63,6	64,2			
5	66,3 67,9		70,1			
6	72,5	75,3	74,9			
7	80,1	82,0	81,4			
8	8 83,9 84,3 9 88,5 90,3		88,3			
9			91,8			
10	89,6	94,0	99,1			

Growth increments based on total length (mm)

Growth increments based on body weight (gr)

	Nucleoforce™						
Weeks	Control	250ppm	500ppm				
1	0,05	0,07	0,08				
2	0,24	0,22	0,29				
3	0,53	0,65	0,74				
4	4 1,02		1,54				
5 1,70		1,87	2,00				
6	6 2,25 7 2,88 8 3,64 9 4,12		2,57				
7			2,88 3,30		3,33		
8			4,00 4,61				
9							
10	4,46	4,96	5,26				

Conclusion:

Dietary supplementation with Nucleoforce[®] enhances growth performance, survival and immunity of *P. monodon*, enabling the shrimps to fight infection or disease

Scientific data: Nucleoforce SALMONIDS

Effects of NF Salmonids on atlantic salmon

Aquatic Health, Puerto varas, Chile, 2005

Objective:

The purpose of this study is to investigate the beneficial effects NF Salmonids on the immune response in salmons challenged with *Piscirickettsia salmonis*

Material & Methods:

- 1100 Atlantic Salmon (Salmo salar) randomly distributed in 10 tanks
- Control vs vaccine vs NF vs NF + vaccine

Results:

71-103 days post intraperitoneal challenge with LD50 of *Piscirickettsia Salmonis*,

 In not vaccinated fish, NF supplementation reduced mortality rate

Scientific data: Nucleoforce SALMONIDS

Effect of Nucleotides in Atlantic salmon diets with vegetable protein content (Salmo salar)

Veterinary School of the University of Warsaw, Poland 2010

Raw material	Control	Nucleoforce™				
Soya bean concentrate (Imcosoy)	26,15	26,15				
Fish meal Scandinavia	22,85	22,85				
Wheat	22,90	22,85				
Rapeseed oil	13,66	13,66				
Fish oil	9,11	9,11				
Wheat gluten	3,02	3,02				
Mineral mix ¹	2,31	2,31				
Nucleotides		0,05				
Table1 - Isoproteic and Isoenergetic diet						

	Fold height	Goblet cell	Goblet cell	Total	Enterocyte	Enterocyte
	(μm)	number per fold	number per	enterocyte	supranuclear	supranuclear/
			100µm of fold	area (µm²)	area (µm²)	total area (%)
CTRL	474 ± 98	29 ± 6	5.95 ± 1.28	269 ± 26	121 ± 16	45 ± 4
NF	520 ± 45	24 ± 2	4.59 ± 0.40	296 ± 33	139 ± 20	48 ± 11
р	0.133	0.014*	0.002	0.039	0.019	0.931

Conclusions:

- CTRL group significantly lower folds in proximal intestine, and tendency to shorter folds in distal
- **CTRL group higher number of goblet cells** in the proximal and distal intestine

Effects of diets supplemented with nucleotides on the performance and health of Tilapia

GIFT Foundation in Central Luzon State University (CLSU) in Nueva Ecija. Phillippines 2010

Objective: Evaluate the overall effect of nucleotides on the performance and health of tilapia

Fish fed with basal diet and the added nucleotides *Nucleoforce Fish*[™] showed a better growth performance, nutrient utilization and survivability compared with the fish fed with basal diet alone.

Conclusion:

- Nucleotide is essential to the **growth** and health of tilapia
- Tilapia fed with NF exhibited faster growth and more efficient conversion of feed to body mass

Evaluation of the effects of the supplement Nucleoforce Fish on the productive output of juvenile meagre receiving diets with a high vegetable protein content (75%). Aquaculture Research Center INRB, IP/ IPIMAR in Olhao, Portugal 2012

Aim: to evaluate the effect, in terms of productive output, of a free nucleotide concentrate (Nucleoforce Fish) when **added as a supplement to a diet with high vegetable protein content**

Animals, materials and methods:

360 Juvenile meagre 37.2 g (± 0.8 g) Housed in 12 tanks (30 fish per tank) at the IPIMAR facilities.

- CONTROL diet, containing 75% vegetable proteins.
- NUCLEOFORCE diet same diet + 1,000 ppm NF FISH Both diets were isoproteic and isoenergetic Experiment performed over a 60d period

Experimental diets for meagre (75 % of the protein was of vegetable origin)

Ingredients (%)	Control	Nucleotide
Fishmeal 65	17,50	17,50
Soycomil PC	10,00	10,00
Corn gluten	16,50	16,50
Soybean meal 48	16,00	16,00
Rapeseed meal	9,00	9,00
Sunflower meal	3,90	3,90
Whole wheat	7,00	7,00
Fish oil	7,50	7,50
Soybean oil	6,30	6,30
NUCLEOFORCE	0,00	0,10

Evaluation of the effects of the supplement Nucleoforce Fish on the productive output of juvenile meagre receiving diets with a high vegetable protein content (75%). Aquaculture Research Center INRB, IP/IPIMAR in Olhao, Portugal 2012

Results:

- Higher weight fed with NF
- NF Significant increase in leucine aminopeptidase activity (increased enterocytes functionality)
- Improved intestinal morphology

NF

Conclusion: Supplementing the high vegetable protein diets of meagre with Nucleoforce Fish yields significant improvements in the animals weight and productive output

Evaluation of the effects of the supplement Nucleoforce Fish on the productive output of juvenile gilthead sea bream receiving 100% plant-based fishmeal-free diets

Aquaculture and Biodiversity Group at the Universitat Politècnica de Valencia. Spain, 2014

Aim: Evaluate the effects of a free nucleotide concentrate (Nucleoforce Fish) used to supplement the diet of gilt-head sea bream formulated exclusively with plant proteins in the **complete absence of fishmeal**

Animals, material and methods:

- Feeds manufactured via an extrusion process
- Manually fed to apparent satiety, twice per day, six days per week
- Administration over 134 days
- Fish housed in fifteen 1 m³ baskets contained in 4000-litre tanks
- Temperature: 22-24°C throughout the trial
- **Evaluations**: Growth (final weight and growth rate) and nutritional efficiency (food conversion ratio)

Ingredient	CONTROL	NF250	NF500	
	g/kg	g/kg	g/kg	
Fishmeal	-	-	-	
Wheat meal	-	-	-	
Wheatgluten	290	290	290	
Lima Bean meal	44	44	44	
Soybean meal	182	182	182	
Peas	44	44	44	
Sunflower	181	181	181	
Nucleoforce Fish		0.25	0.50	

Evaluation of the effects of the supplement Nucleoforce Fish on the productive output of juvenile gilthead sea bream receiving 100% plant-based fishmeal-free diets

Aquaculture and Biodiversity Group at the Universitat Politècnica de Valencia. Spain, 2014

Results:				120 —					
						100 +			
						80 +			
						60 +			
		TREATMENT	CONTROL	NF 250	NF 500	40 +			
						20 +			
						o +			
	Initial weight (g)		12.7a	10.6a	10.6a		Control	NF 250	NF 500
	Final weight (g)		87b	111a	107a	1,8		IGR (%	
						1,75			/ 4/
						1,7			
	IGR (%/day-1)		1.59b	1.74a	1.71a	1,65			
						1,6			
						1,55			
						1,5	-		
							Control		

120 opInitial Weight Final Weight — (g)

(g)

Conclusion:

Improved effects on productive performance and intestinal health when diets supplemented with NF **FISH**

Summary AQUACULTURE – R&D Bioiberica Animal Health:

Need for new tools and mechanisms to enhance growth of the aquaculture industry **Design diets and NUTRITIONAL STRATEGIES with positive effects on animal health** while avoiding negative impact of current challenges

BIOIBERICA

- Promote growth and improve immune & intestinal health
- Good scientific evidence in humans and other species
- Building up more scientific support for fish and shrimps

2018: ONE STEP BEYOND... ADDING ALPHA-LUCANS to improve formulation?

NEW Scientific data is comming soon ...

1 Effects of DIETARY NUCLEOTIDES plus α-GLUCANS on in white shrimp *Litopenaeus vannamei* affected by Acute Hepatopancreatic Necrosis Disease (AHPND)

2 Development of NUCLEOTIDE Formula for Sea Cucumber

MORTALITY 170h post-infection

A look to the future

... AQUACULTURE is the future

"We must plant the sea and herd its animals... using the sea as farmers instead of hunters. That is what civilization is all about –

farming replacing hunting"

Jacques-Yves Cousteau 1971

Thank you for your attention

xcordoba@bioiberica.com

