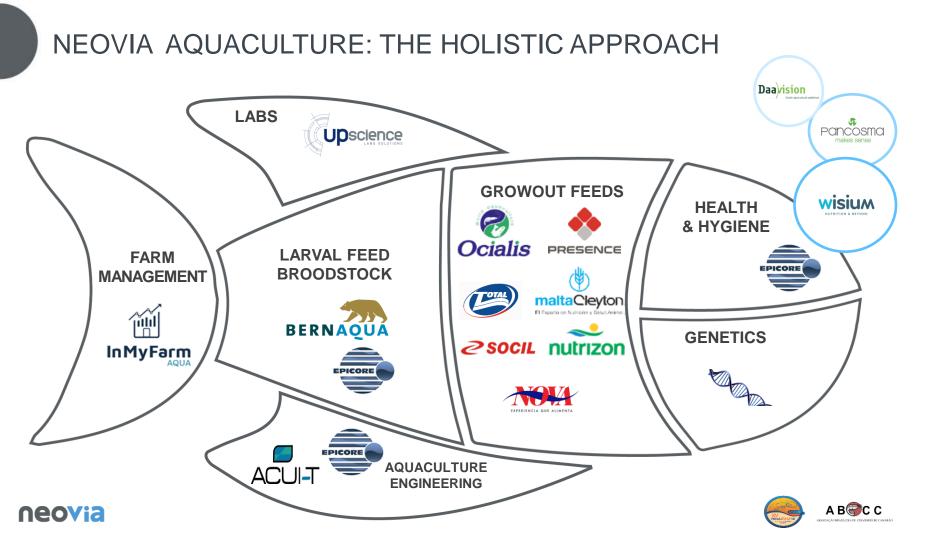


IMPROVING PRODUCTIVITY IN SHRIMP FARMING: TOWARDS INTENSIVE FARMING


Didier Leclercq

General Manager Acui-T dleclercq@neovia-group.com Mobile: +33 609028724

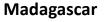
Fenacam 2018 Natal, November, 14th 2018

ACUI-T AQUACULTURE ENGINEERING

ACUI-T

- Ozone treatment
- Biofiltration
- Oxygen production and transfer
- CO2 degassing
- Mechanical filtration
- Sludge concentration
- Biofiltration
- Pumps/pumping stations

State of the art


Traditional structures:

- Large earth pond
- Low density
- Long cycle
- Huge water flow, up to 15% renewal per day

Vietnam

Mexico

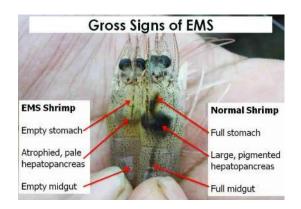
State of the art

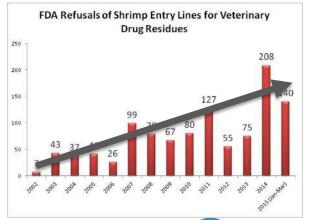
Traditional cycle:

- ☐ Same pond PL to Harvest
- ☐ Low density
- ☐ Long cycle
- Low aeration
- ☐ High water renewal
- □ No water treatment

Environmental limits?

ACUI-T


Diseases hit world wide:


With associated chemical contamination risks

Bacteria and viruses

Main difficulties vs Main solutions

- ☐ Pond and water management are difficult in large ponds
- BIOSECURITY IS DIFFICULT in old structures
- Organic pollution is increasing at farm inlets

- Protect the crop from contamination in hatcheries: SPF PLs supply
- ☐ Protect the crop from water contamination: water disinfection, OZONE
- ☐ Water management using PROBIOTICS to generate good environment
- □ DEVELOP BIOSECURITY, Pond liner, crab barriers, greenhouses, ...
- ☐ Divide the production cycle in STEPS to reduce exposure to risks
- ☐ MULTIPLY CYCLES over a year

Indoor versus Outdoor

Limiting factors:

- > Temperature
- ➤ Rain → salinity
- > Pests & Disease transfer
- > Light control

Indoor parameters

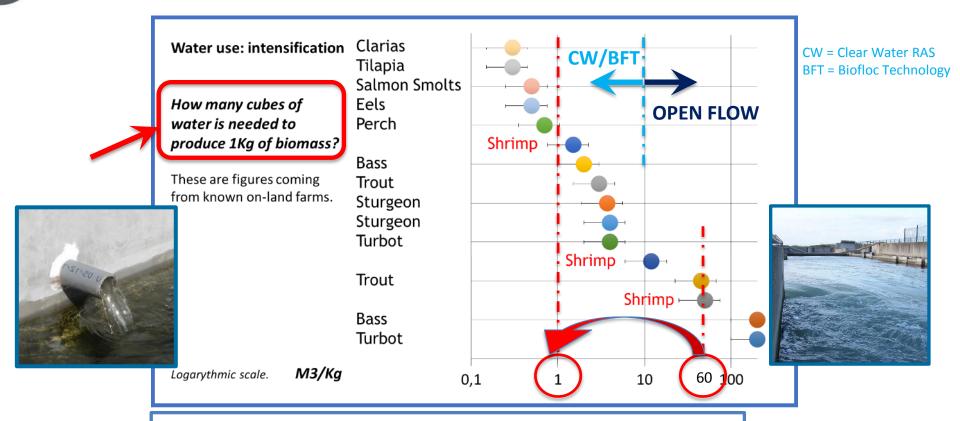
Shade – luxmeter control –

→ reduce light down to photosynthesis inhibition

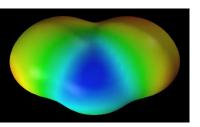
Ventilation: air has to be renewed (CO2 accumulation, humidity, temperature control...)

Hygiene becomes a must: training staff...

First application is *Nursing shrimp under controlled conditions*



Water productivity: a key parameter to progress



The advantages of using less water

- Reduce constraints on farm inlet:
 - > civil works, filtration, decantation, ...
- Protect the crop: Disinfect with more appropriate means
 - Ozone, Electro chlorination,...
 - Continuous process, Ultrafiltration,...
- Optimize growth: parameters become easier to adjust
 - Temperature, salinity, ...
- Improve culture environment: Probiotics
- > Reduce impact: improve effluent before disposal
 - Chemical oxygen demand can be reduced
- Value effluent: Nutriants/sludge can eventually be used in growing plants

How water requirement reduction impacts energy costs?

	traditional	advanced	intensive	
area m²	40000	10000	1333	m3
water replacement per day	10%	4%	3%	
number "DOC"	112	112	112	DOC
output Kg per crop	4000	4000	4000	Kg/crop
water: m3/Kg shrimp	112	11,2	1,12	m3/Kg
pumping cost /Kg shrimp	0,40	0,04	0,00	USD/Kg
ozone treatment cost/Kg shrimp	0	0,08	0,09	USD/Kg
aeration cost/Kg shrimp	0	0,39	0,30	USD/Kg
total energy cost /Kg shrimp	0,40	0,51	0,40	USD/Kg

USD/KWH: 0,08

Water inlets: Ozone treatments to protect crops

- From pathogen load reduction to full disinfection
- For either flow-through or RAS applications
- From hatchery to on-growing operations
- Ozone efficient transfer into water thanks to specific mixing devices developed by ACUI-T:
 - ☐ Very high transfer efficiency: from 90 % up
 - ☐ Very low working head compared to classical mixing devices

Madagascar on-growing

Hatchery containerized set-up

Hatchery large indoor set-up

Ozone on On-Growing: an example

BIOSECURITY + OZONE RESULTS

Peneus monodon

On-Growing at Madagascar

200 hectares → 5 x 900m3/hr 100% OZONE

370 hectares → 10 x 900m3/hr 100% OZONE

	Traditional	Ozonation	Notes/Units
Mortality	>80%	<20%	Due to WSSV
DO of incoming water	2-6	10-15	PPM
Water exchange	15%	<4%	Pond volume/day
FCR	1.7 to 1.8	1.2 to 1.4	Kg feed/Kg shrimp
Pond Productivity	4	10	MT/Hectare/Year
Water efficiency	> 120	12	m3/Kg shrimp


How does ozone disinfection impact your production costs?

CAPEX FOR DIFFERENT TREATMENT CONFIGURATIONS					
	(values in K€)				
Flow (m3/hr)	W/O Back up	W Back up			
25-40	40-60	75-110			
60-90	60-80	100-150			
120-180	100-130	200 -250			
900	200-240	240-300			

DISINFECTION: PRICE TO PAY FOR SECURITY AND RELIABILITY?

CAPEX	DEPRECIATION	OPEX (Ozone Treatment)	C+O
(m3 per Million Pls)	(values in €/ million PLs)	(values in €/ million PLs)	€/M.PLs
250	5-18	2,5-3	8-20
500	10-36	5	15-40
750	15-72	7	22-80

CAPEX	DEPRECIATION	OPEX (Ozone Treatment)	C+O
(m3/Kg crop)	(values in €/Kg)	(values in €/Kg)	€/Kg
1	0,07	0,013	0,083
10	0,05	0,025	0,075
100	>5	>0,2	>>>

How does ozone disinfection impact your production costs?

CAPEX FOR DIFFERENT TREATMENT CONFIGURATIONS					
	(values in K€)				
Flow (m3/hr)	W/O Back up	W Back up			
25-40	40-60	75-110			
60-90	60-80	100-150			
120-180	100-130	200 -250			
900	200-240	240-300			

IS THIS A COSTLY INSURANCE?

CAPEX DEPRECIATION		OPEX (Ozone Treatment)	C+O
(m3 per Million Pls)	(values in €/ million PLs)	(values in €/ million PLs)	€/M.PLs
250	5-18	2,5-3	8-20
500	10-36	5	15-40
750	15-72	7	22-80

CAPEX	DEPRECIATION	OPEX (Ozone Treatment)	C+O
(m3/Kg crop)	(values in €/Kg)	(values in €/Kg)	€/Kg
1	0,07	0,013	0,083
10	0,05	0,025	0,075
100	>5	>0,2	>>>

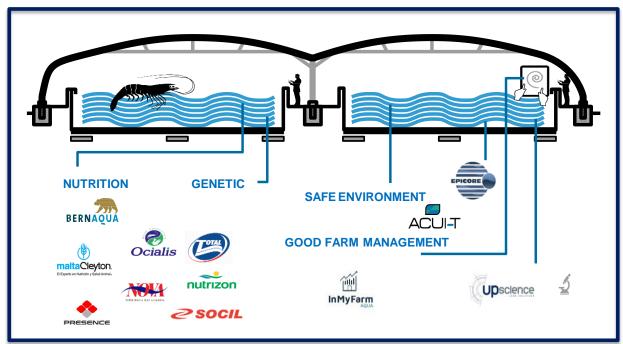
Nursing Shrimp is the first step forward

Production cycle staging → risk reduction

Increased number of cycles per year → productivity rises

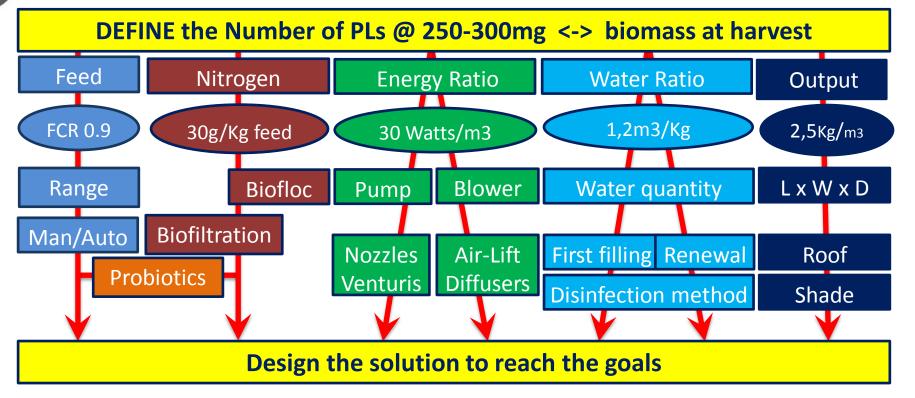
Control the environment → output>100T/ha/year

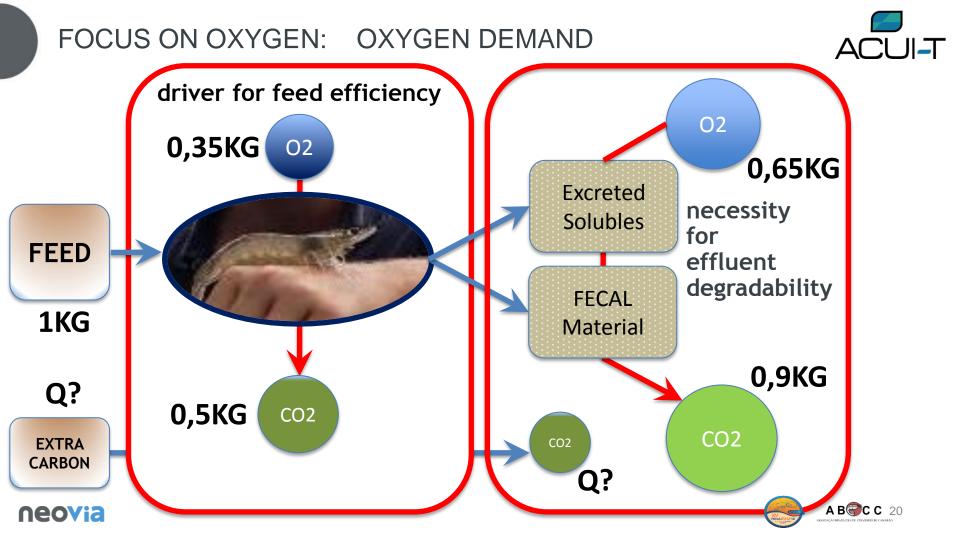
		Stage 1	Stage 2	Stage 3
Survival	%	>95%	>85	>85
Water exchange	%/day	0-5	0-10	0-20
FCR		0,88	1	1,2
Pond productivity		3	3-6	5-10
Water efficiency	m3/Kg	1-3	0,5-1	0,5-1
Initial body weight	g	0,003	0,25-0,3	3-6
Final body weight	g	0,25-0,3	3-6	15-25
Duration of cycle	days	30	42	42


Nursing to optimize On-Growing

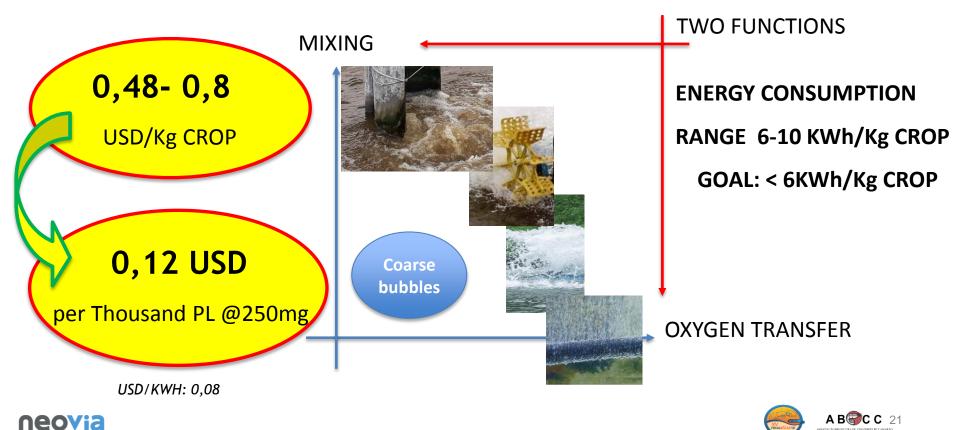
NEOVIA Showroom: All solutions playing together

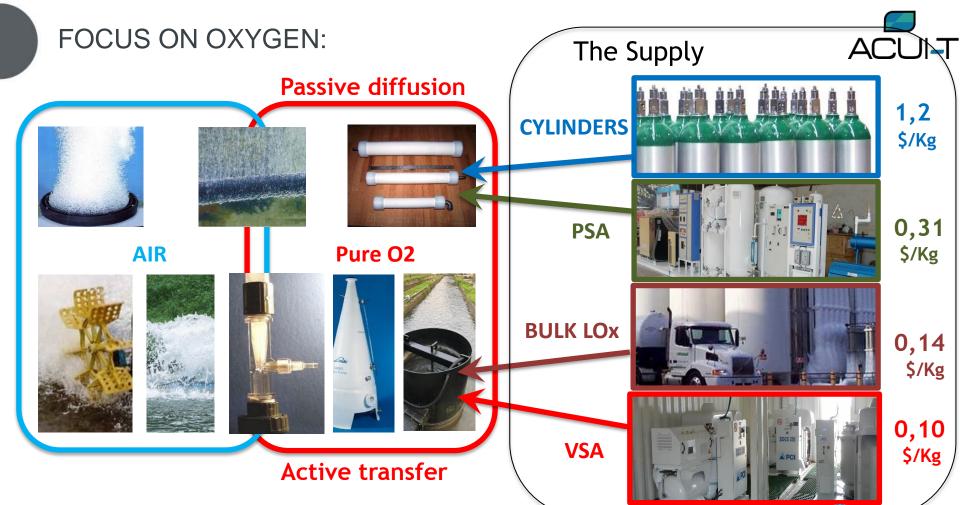
- Aggregate knowledge
- Implement a pilot Located in Vietnam
- Diffuse the knowledge





Nursery design and optimization to reduce costs





AERATION IN TANKS AND PONDS FOR NURSERY

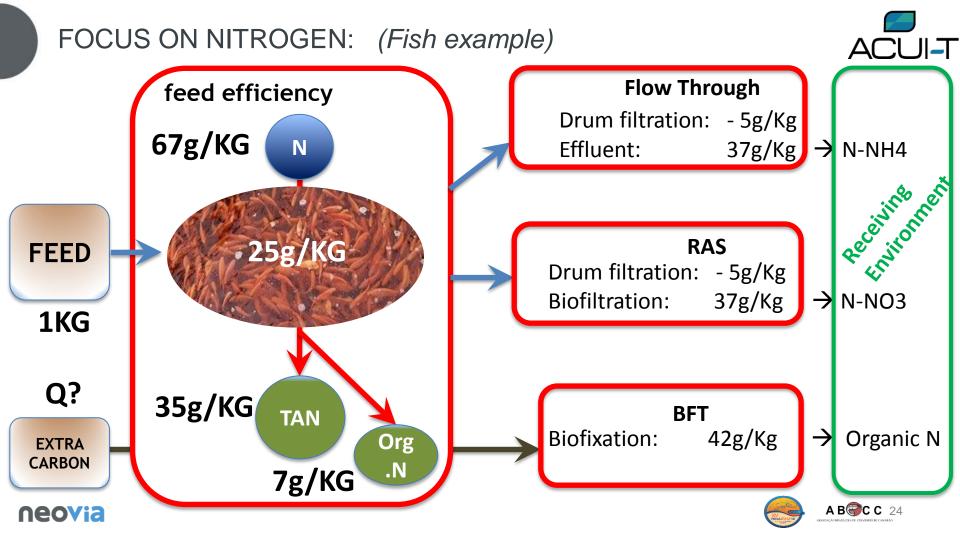
neovia

A B C C

FOCUS ON OXYGEN: The effect on production cost

Evaluation of Oxygen cost per Kg additionnal crop

0,15 USD/Kg Crop


PRODUCTION SYSTEM	RAS				BFT	
Diffusion System		ACTIVE LHM		PASSIVE/CERAMICS		
Dissolution rate		85%			40%	
Kg O2 /Kg feed		0,8			1,7	
FCR	PSA	VSA	Bulklex	PSA	VSA	Bulk Lox
0,6	0,19	0,09	0,11	0,32	0,11	0,15
0,7	0,22	0,10	0,12	0,37	0,12	0,17
0,8	0,25	0,12	0,14	0,43	0,14	0,20
0,9	0,26	0,13	0,16	0,48	0,16	9,22
11	0,31	0,14	0,18	0,54	0,18	0,25
1,1	0,34	0,16	0,19	0,59	0,20	0,27
1,2	0,37	0,17	0,21	0,64	0,21	0,30
Price Lox:	0,14 USD/Kg		Depreciation equ	uipment for diffusi	on 0,005	USD/Kg Crop
Price VSA:	0,1 USD/Kg		Energy expendit	ure for diffusion	0,08	USD/Kg O2
Price PSA	0,31 USD/Kg					

Impact: <4 USD CENTS per thousand PLs @250mg

BIOFLOC versus RAS

		TRADITIONAL	BIOFLOC (BFT)	CLEAR WATER (CW) RAS	FISH REFERENCE
Density end of cycle	Kg/m3	<0,2	4 - 8	>8	>50
Solids extraction		none	Settling tank	Settling-biodigestion	Drum Filtration
Ammonia control		none	Within the floc	Moving bed biofiltration	Moving bed biofiltration
Water use	m3/Kg prod.	30-120.	0,6-1	0,3-1	0,3-3
Energy efficiency	KWh/Kg prod.	0-6	3-4	2-5	3-7
Recirculation rate		none	poor	high	high
Feed/m3/day	gr/m3/day	<10	<200	>200	500-1000
Number of cycles	cycles/year	1-3	3-6	5-6	continuous

neovia

RAS Modules for breeding and maturation centres

- Conditionning and maturation facilities
 - 50% of the shrimp Hatchery water requirement
- □ Breeders production → temperature control
 → high energy and equipment requirement

Using modular RAS:

- ☐ Water **down to 5%** of traditional systems.
 - □ . borehole with stable parameters ?
- Thermal control cost can be drastically reduced

Tools for Shrimp RAS

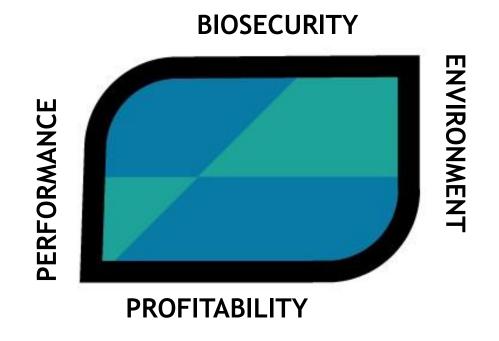
ACUI-T

- ☐ Air-lifts → Lift up to 20cm to generate water circulation
 - → Oxygen transfer
 - → Energy savings
- Moving beds biofiltres → Nitrogen cycle control
 - → CO2 Degassing
 - → Oxygen supply
- □ Probiotics → environment management
- Use of additional oxygen
 - → Improves carrying capacity
 - → Reduces oxygen related crashes

Take Home Message:

 Traditional shrimp cultivation methods are due to make their revolution to recover profitability and keep their market

Intensification: New production processes emerge


- ☐ Water productivity has to increase to reduce the relative cost of disinfection
- Disinfection process to eliminate pathogens is a must to have
- ☐ Improved aeration and biofiltration to reduce energy input
- ☐ Environment management with probiotics to optimize welfare and productivity
- Intensification to reduce footprint and increase control
- ☐ Nursing shrimp increases output per year and per unit of tanks/ponds

AQUACULTURE IS OUR END

ENGINEERING IS JUST A MEAN

Thanks for your attention

Thanks to NEOVIA AQUA-COMMUNITY for providing illustrations

#follow us

