

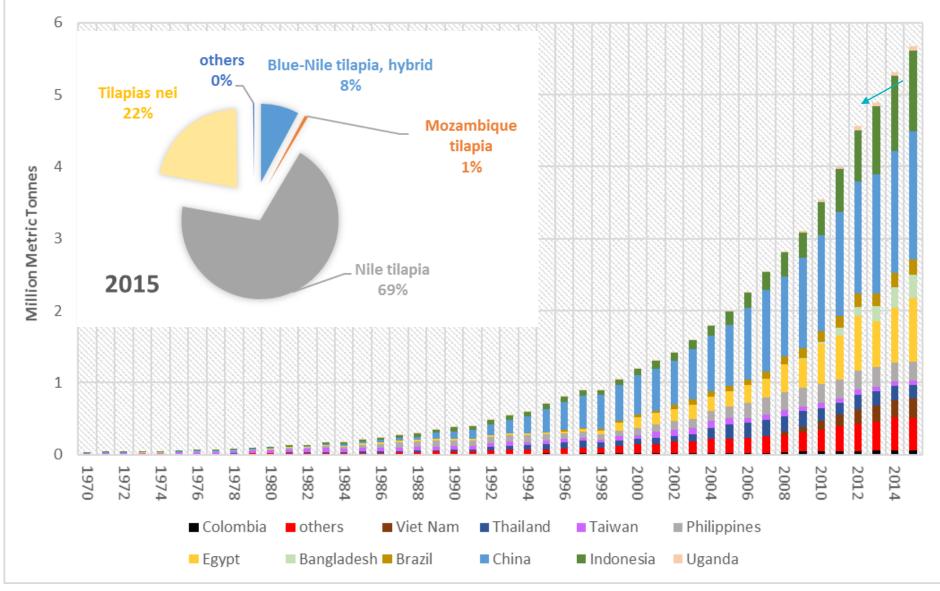
Akvaforsk Genetics

GENOME-WIDE ASSOCIATION STUDY FOR SURVIVAL TO Streptococcus iniae AND S. agalactiae IN Nile Tilapia (Oreochromis niloticus)

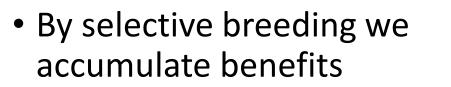
Sergio Vela Avitúa; Carlos Lozano; Rama Bangera; Jose Ospina; Morten Rye

INTRODUCTION

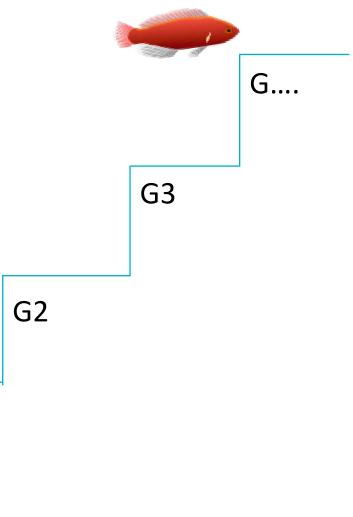
MATERIAL AND METHODS


- RESULTS
- CONCLUSIONS

2



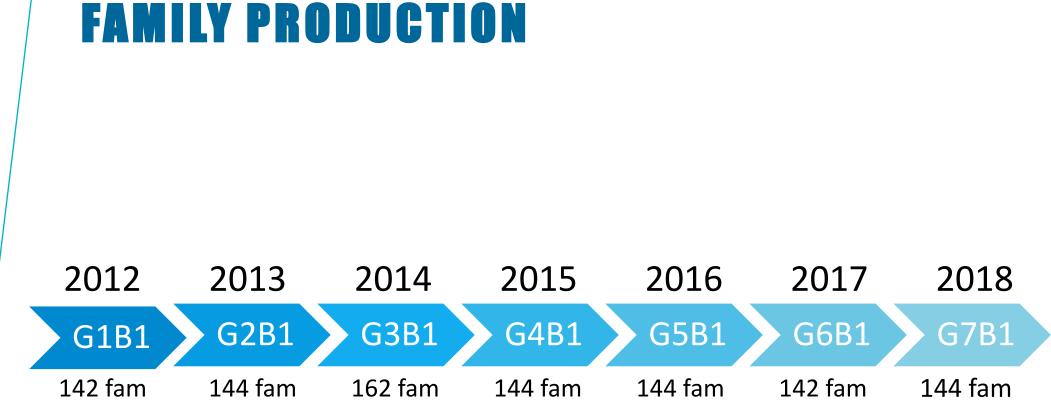
Tilapia aquaculture production by country



ACCUMULATING BENEFITS BY Selection

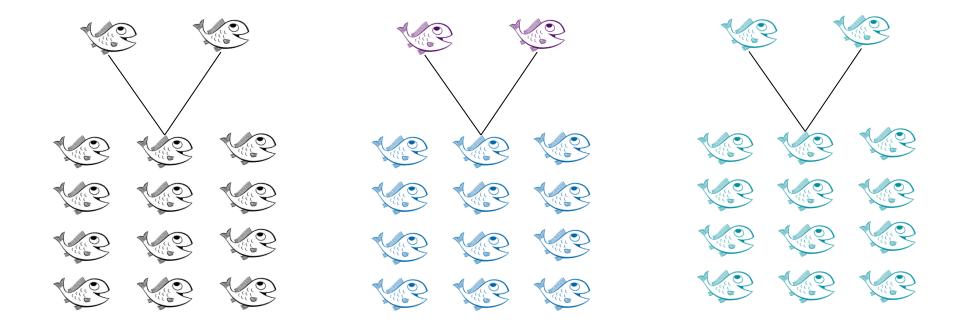
G0

G1

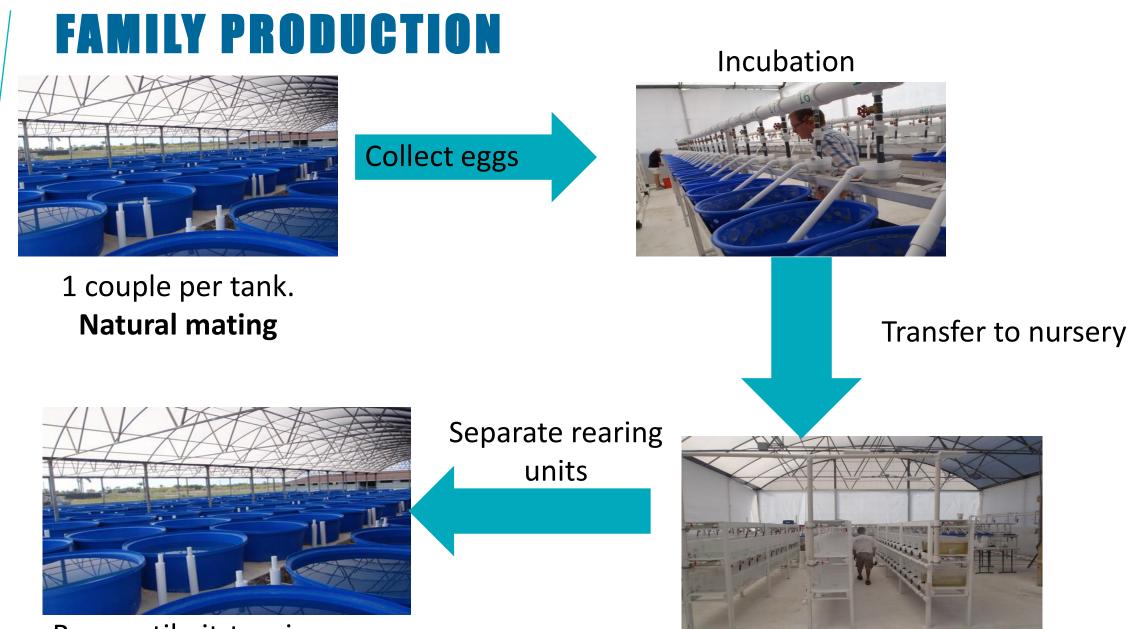


BASE POPULATION -Spring genetics

- Origin :
 - Gift Project 1988-1997 (5 Generations of selection)
 - RIA 1 1997-2004 (4 Generations of selection)
 - Nicanor 2004-2009 (3 Generations of selection)
- To create the base population fry from Nicanor were introduced to Miami in 2010



Base population

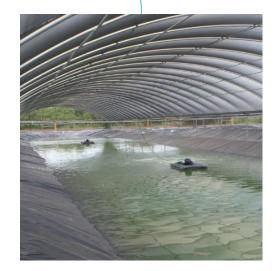


FAMILY BASED BREEDING PROGRAMS

Select candidates based on the performatives

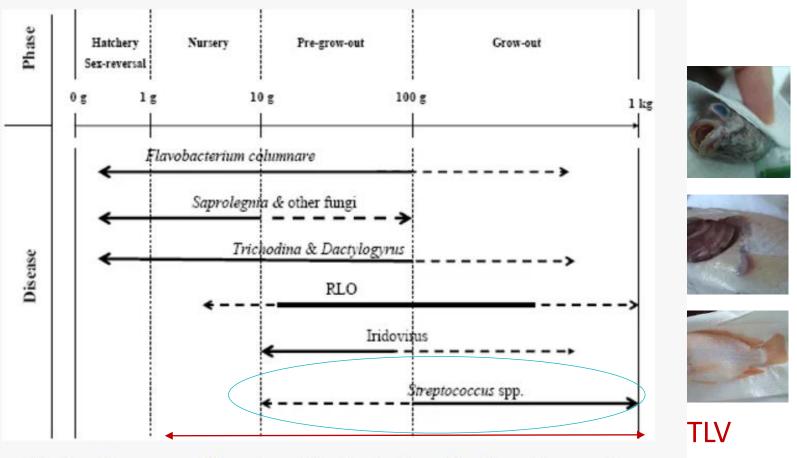
Rear until pit-tagging

Photos : Hideyoshi Segovia


Tagging Tissue sampling

Growth

Disease ch-test


USDA

DISEASES

Major diseases affecting tilapia during the farming cycle

Figure and fotos from the fish site: https://thefishsite.com

STREPTOCOCCUS DISTRIBUTION

	Global prevalence (as % of total streptococcal isolations)*
S. agalactiae Biotype 1	26
S. agalactiae Biotype 2	56
S. iniae	18
* Data generated by Intervet/Sc	herina-Plouah

* Data generated by Intervet/Schering-Ploug Animal Health, Singapore

From Sheehan et al 2009, Streptococcosis in tilapia: A more complex problem than expected?

Figure 1. Global distribution of S. iniae, S. agalactiae Biotype 1 and S. agalactiae Biotype 2 in tilapia and the countries where these pathogens have been identified and associated with disease.

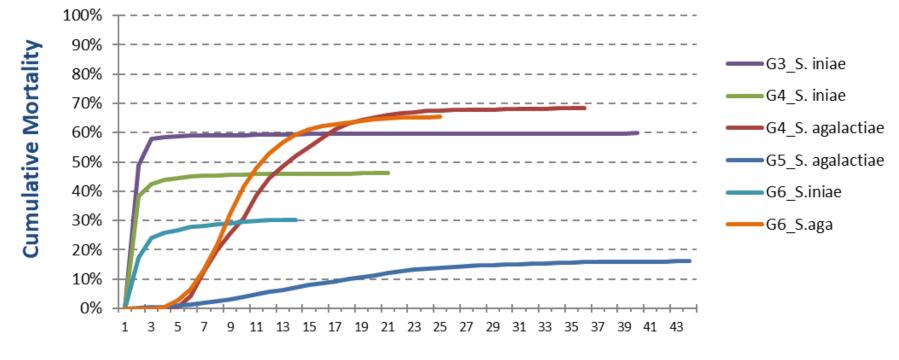
S. agalactiae Biotype 2 (and S. iniae)
S. agalactiae Biotype 1 (and S. iniae)
S. agalactiae Biotype 1 and 2 (and S. iniae)

<i>S. agalactiae</i> vaccine strain	<i>S. agalactia</i> e challenge strain	Treatment group	% mortality	RPP*	
		VACCINATES	7	93%	
<i>S. agalactiae</i> Biotype 1	<i>S. agalactiae</i> Biotype 1	CONTROL	93	5570	
	S. agalactiae Biotype 2	VACCINATES	87	0	
		CONTROL	80	U	
			n) includes mortality and recovery on the observation period. RPP is calcu infection in controls)) x 100.		

<i>S. agalactiae</i> vaccine strain	<i>S. agalactia</i> e challenge strain	Treatment group	% mortality	RPP*
	<i>S. agalactia</i> e Biotype 1	VACCINATES	53	0
<i>S. agalactiae</i> Biotype 2		CONTROL	53	U
	S. agalactiae Biotype 2	VACCINATES	13	80%
		CONTROL	67	00 /0
Table 3. Sa2 vaccines do not protect against Sa1 challenge. * RPP (relative percent protection) includes mortality and recovery of challenge organism from surviving fish at the end of the observation period. RPP is calculated as RPP = (1-(infection in vaccinates/infection in controls)) x 100.				

STREPTOCOCCUS Importance

- *"Streptococcus agalactiae* and *Streptococcus iniae* appear to be the principal agents of streptococcosis in tilapia."
- "Streptococcus agalactiae have distinct clusters (Biotypes)"
- "Immunity to S. agalactiae is biotype-specific"


STREP. CH-TESTS

Generation	Method	Fish/fam	Weight(g)
G3B1	S. iniae (cohab)	10	179
G3B1	S. iniae	10	180
G4B1	S. agalactiae	15	179
G4B1	S. Iniae	20	29
G5B1	S. agalactiae	20	65
G6B1	S. iniae	25	-
G6B1	S. agalactiae	20	-

Agalactiae Biotype 2 used.

DATA FROM ALL Generations

Day of Challenge test

Cumulative mortality all generations

GENETIC PARAMETERS

Gen	Trait	h ² ± SE	c ² ± SE
3	Survival Stiniaa	0.41 ± 0.13	0.01 ± 0.05
4	Survival S. iniae	0.53 ± 0.12	0.03 ± 0.04
	(G3 <i>,</i> G4)	0.49 ± 0.08	0.02 ± 0.02
4	Survival S. agalactica	0.36 ± 0.11	0.01 ± 0.04
5	Survival S. agalactiae (G4,G5)	0.12 ± 0.04	0.02 ± 0.02
All		0.16 ± 0.03	0.05 ± 0.01

ASSORTATIVE MATING GROUPS *S. iniae*

Assortative mating	Number of	avg_S. inea	Survival to inea in G4		G4B1
groups	families	G3B1 index parents*	Average**	Min I	Max
none	132	101.6	54 %	0 %	100 %
yes_high	6	121.9	88 %	60 %	100 %
yes_low	6	80.2	10 %	0 %	42 %
Grand Total	144				

* Index (mean=100, sd=10). Avg=(sire idex +dam index)/2

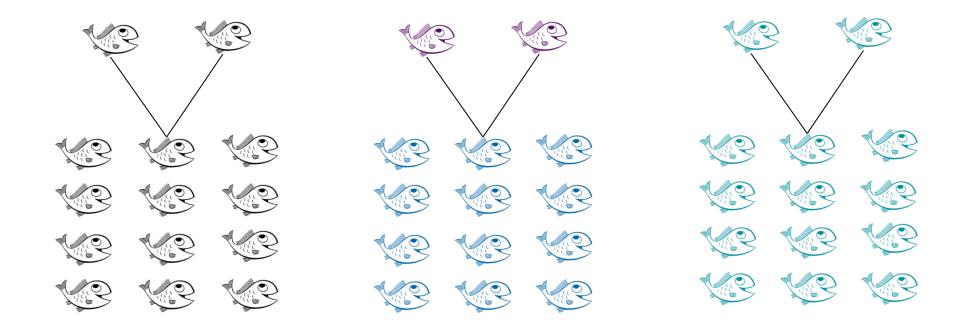
** mean family survival to *S. inea* during challenge test.

Both G3B1 and G4B1 challenge tests were done with injection

ASSORTATIVE MATING GROUPS *S. agalactiae*

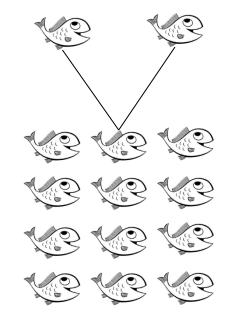
Assortative mating	Number of	avg_S.aga.	Survival to agalactiae in (n G5B1
groups	families	G4B1 index parents*	Average**	Min	Max
none	132	103.8	85 %	30 %	100 %
yes_high	6	122.8	98 %	95 %	100 %
yes_low	6	83.7	61 %	40 %	75 %
Grand Total	144				

* Index (mean=100, sd=10). Avg=(sire idex +dam index)/2


** mean family survival to S. agalactiae natural during challenge test.

G4B1 S. aga. challenge test was done with injection

G5B1 S. aga. challenge test was a natural outbreak


FAMILY BASED BREEDING Programs

Select candidates based on the performatives

BREEDING PROGRAMS USING Genomic information

Individual genetic values are calculated for the candidates

Marker effects are calculated

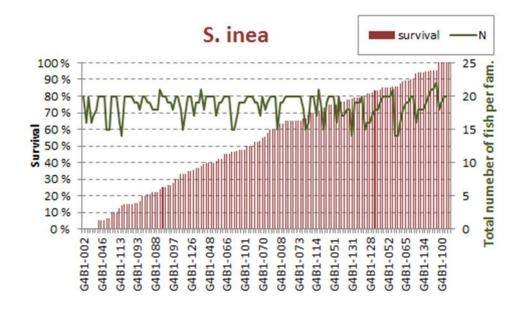
Test for diferent traits

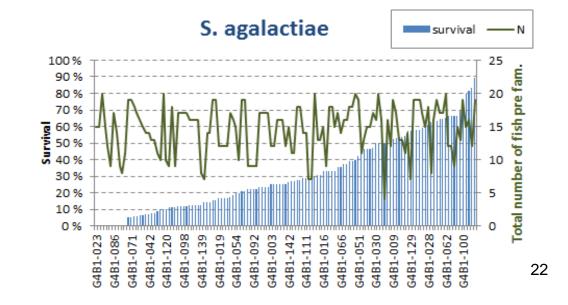
+

Genotypes

INTRODUCTION

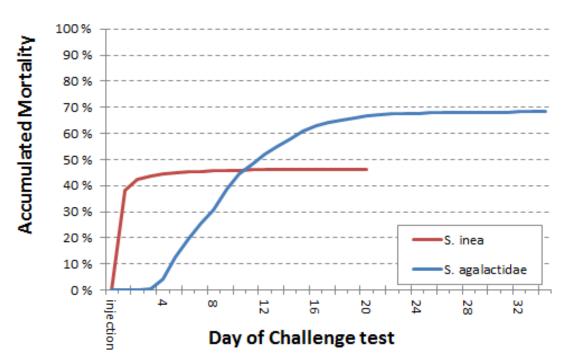
MATERIAL AND METHODS


- RESULTS
- CONCLUSIONS


CHALLENGE TEST S. iniae

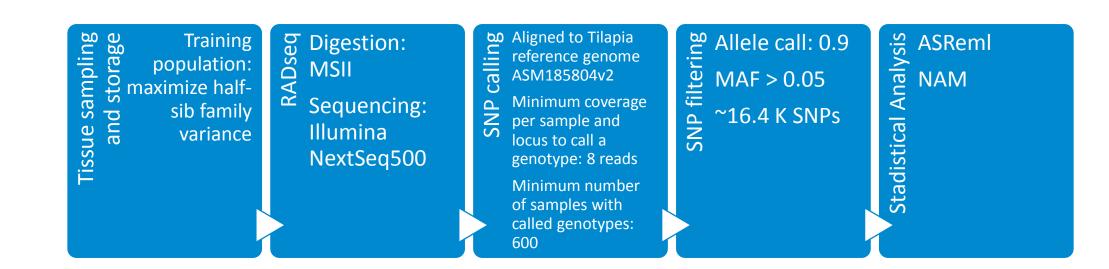
- 2686 Fish (20/family) were individually inoculated with S. iniae via IP
- Mortalities recorded for 21 days post infection
- High variation in mean family survival

S. agalactiae


- 1912 Fish (15/family) were individually inoculated with S. iniae via IM
- Mortalities recorded for 34 days post infection
- High variation in mean family survival

CHALLENTE TEST

- S. inea mortalities mostly happened on day one and two, almost flatening at day 12
- S. agalactiae mortalities started on day 3 and occured on a longer period of time than S. inea
- Mortality curves similar to previous years
- Flin clips of all fish in Ch-test preserved in 95% ethanol and stored at -20°C



	S. iniae	S. agalactiae
Number of families	39	45
Total number of samples	321	414
Mean individuals/family	8.5	9.2
Mean survival (sd)	0.52 (0.5)	0.33 (0.47)

DATA PROCESING

GWAS STATISTICAL Model

$$y = \mu + Xb + Za + e$$

Where:

- *y*: the vector of phenotypic records
- μ : the overall mean
- *b*: unknown random allele substitution effect of the evaluated SNP
- *a*: random additive genetic effect $a \sim N(0, A\sigma_a^2)$ and *A* is the additive relationship matrix

Significance of SNP was tested as LRT (*likelihood ratio test statistics*) comparing the model without fitting the current SNP.

INTRODUCTION

MATERIAL AND METHODS

• **RESULTS**

CONCLUSIONS

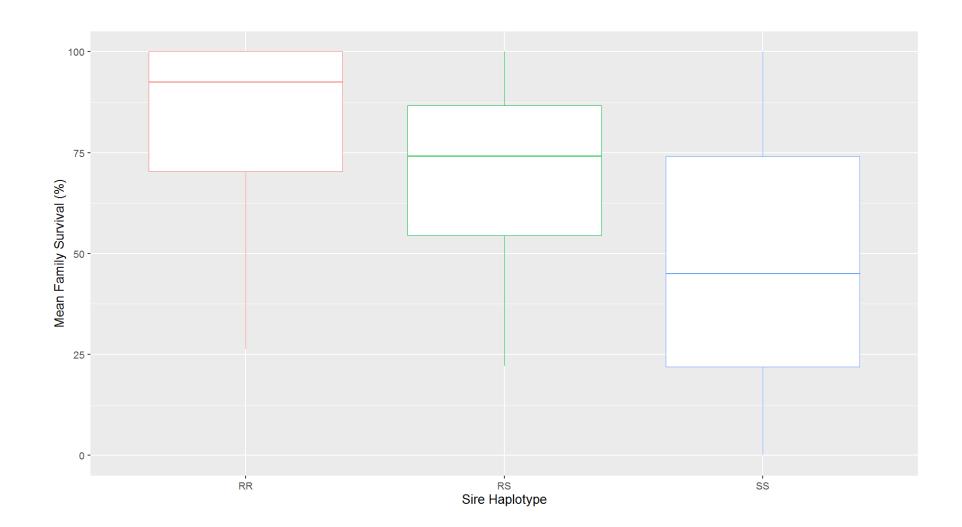
1% adjusted significance level œ. -log10(p-value) \sim 0

Manhattan plot of GWAS for Streptoccocus agalactiae survival

• œ Genome wide significance • • œ. -log10(p-value) 4 ۰. ۰. N

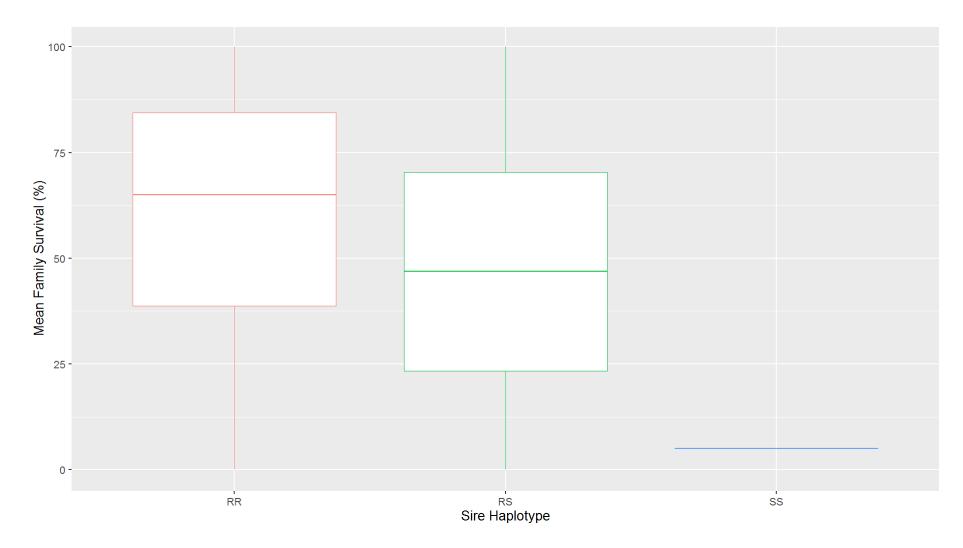
0

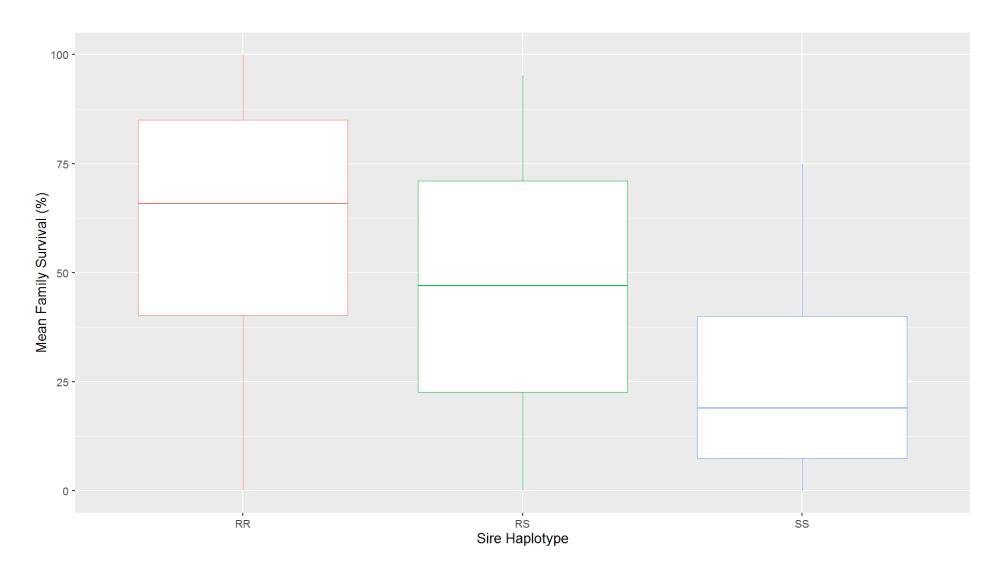
Manhattan plot of GWAS for Streptoccocus iniae survival


MARKER EFFECTS

ld of the SNP	σ_p^2	σ^2_{SNP}	σ_a^2	Genetic variance of the SNP*
TN-QTL-SI-1	0.292	0.234	0.068	0.07
TN-QTL-SI-2	0.294	0.259	0.077	0.12
TN-QTL-SI-3	0.297	0.271	0.080	0.12

*Genetic variance explained by a SNP was estimated as $\sigma_{SNP}^2 = 2pqa^2$ where p and q are allele frequencies and a the estimated allele substitution effect.





TN-QTL-SI-2

TN-QTL-SI-3

CONCLUSIONS S. AGALACTIAE

- In our study, no areas of significant effect were found for survival to S. agalactiae
- Given results from current and previous studies, it is likely that survival to S. agalactiae is a poligenic trait
- In order to perform whitin family selection, the implementation of genomic selection for this disease, further research on the method more suitable according to the genetic architecture of the trait

CONCLUSIONS S. iniae

- An area of significant effect were found for survival to S. iniae in the studied population where a clear peak in one single area of the genome is observed
- Average family survival by haplotype showed that parents with favorable alleles produce families with higher average survival than parents homozygote to unfavorable allele
- Implementation of marker assisted selection to produce families with higher survival to the disease is possible using the identified markers.

We thank to our collaborators in USDA-ARS Craig Shoemaker and Benjamin LaFrentz

THANK YOU

• SERGIO VELA AVITUA sergio.vela@akvaforskgenetics.com

www.akvaforskgenetics.com

