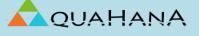


# Recent developments in shrimp feeds & feeding


### a practical perspective



### Albert G.J. Tacon



Aquatic Farms Ltd Kaneohe, HI 96744 USA



agjtacon@aquahana.com

### **TOP FED AQUACULTURE SPECIES IN 2013**

| Top fed species      | Tonnes     | APR 20-13 | \$ billion | Feed Tonnes |
|----------------------|------------|-----------|------------|-------------|
|                      |            |           |            |             |
| 1. Chinese fed carp  | 13,158,580 | 5.2 %     | 17.7       | 11,855,881  |
| 2. Tilapia           | 4,823,160  | 11.3%     | 8.2        | 7,215,447   |
| 3. Shrimp            | 4,454,602  | 11.1 %    | 22.7       | 6,361,172   |
| 4. Catfishes         | 4,274,110  | 10.1 %    | 6.8        | 4,727,166   |
| 5. Marine fish       | 2,283,456  | 8.1%      | 9.5        | 3,164,870   |
| 6. Salmon            | 2,283,093  | 12.5 %    | 13.8       | 2,968,021   |
| 7. Misc FW/D fish ** | 2,206,437  | 10.5%     | 4.9        | 1,390,055   |
| 8. FW crustaceans    | 1,953,773  | 4.9 %     | 11.1       | 1,967,449   |
| 9. Milkfish          | 1,043,936  | 8.9 %     | 1.8        | 1,002,178   |
| 10. Trout            | 836,569    | 2.7 %     | 3.6        | 1,087,540   |
| 11. Eel              | 231,682    | -5.1 %    | 1.3        | 355,863     |
|                      |            |           |            |             |
| TOTAL                | 37,549,398 | 7.3 %     | 101.4      | 42,095,642  |

\* Calculated from FAO (2015); \*\* Miscellaneous freshwater & diadromous fish



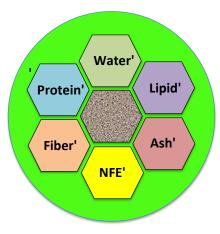
Total farmed shrimp production - 4.45 million tonnes

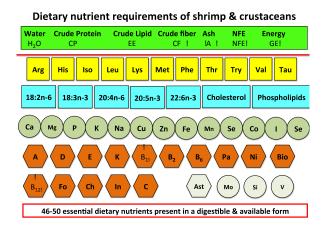
*Litopenaeus vannamei* - 3.31 million tonnes or 74.4% total *Penaeus mondon* - 803,783 tonnes or 18.0% total

Growth rate since 2000 – 11.1 % per year (26.6%/1.88% LV/PM)

Major country producers - China 38.1%, Indonesia 14.0%, Vietnam 12.1%, Thailand 7.4%, Ecuador 6.8%, India 6.5% & Mexico 2.7%

Percent total production on feeds - 84%


Calculated Economic FCR - 1.7


Total shrimp aquafeed production - 6.36 million tonnes

### **Recent developments in shrimp feeds & feeding**



- Improved labeling & reporting of nutrient levels within feed ingredients & shrimp feeds
- Improved feed formulation & reduced use of wild fish in shrimp feeds
- Improved on-farm feed management practices tailored to the needs of small-scale shrimp farmers







### **Recent developments in shrimp feeds & feeding**



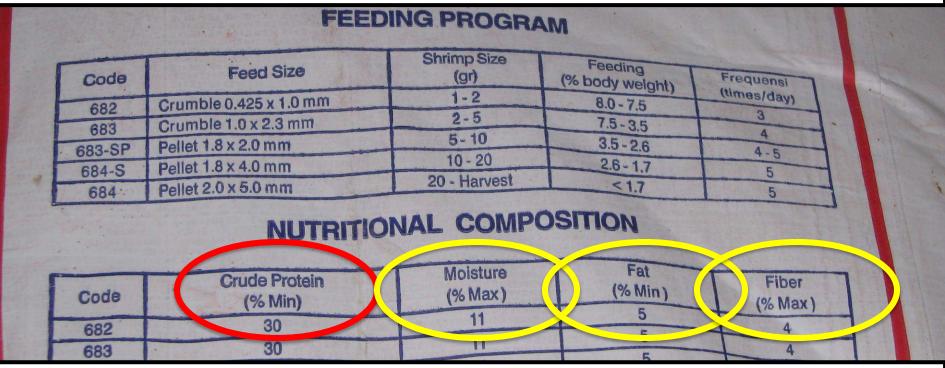
FISH MEAL, SHRIMP MEAL, SQUID MEAL, FISH OIL, WHEAT FLOUR, SOYABEAN MEAL, CHOLESTEROL, PHOSPHOLIPID, VITAMINS AND MINERALS

#### FEEDING PROGRAM

 Improved labeling & reporting of nutrient levels within feed ingredients & shrimp feeds

### NUTRITIONAL COMPOSITION

|        | and a set of the set of the set of the set of the set | and the second se | and an internal to the second s |                   |
|--------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Code   | Crude Protein<br>(% Min)                              | Moisture<br>(% Max )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fat<br>(% Min )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fiber<br>(% Max ) |
| 682    | 30                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                 |
| 683    | 30                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                 |
| 683-SP | 30                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                 |
| 684-S  | 28                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                 |
| 684    | 28                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                 |


### IRAWAN SHRIMP FEED

HAS BEEN SCIENTIFICALLY FORMULATED TO PROVIDE 100 % COMPLETE BALANCED

# The label just complies with national feed manufacturing laws & proximate composition guarantees for the farmer

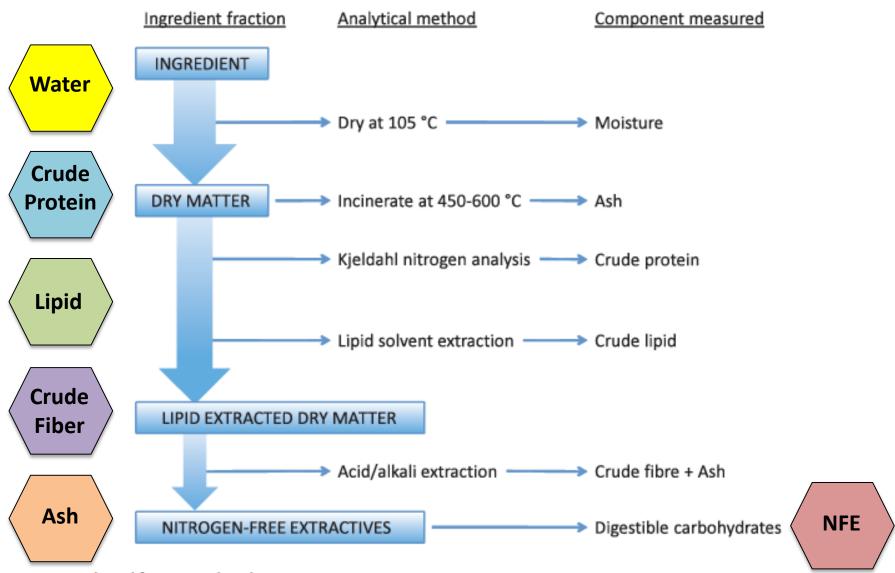
#### INGREDIENTS

However, the label does not give any indication of the essential dietary nutrient content of the feed or concerning the bioavailability of the nutrients present



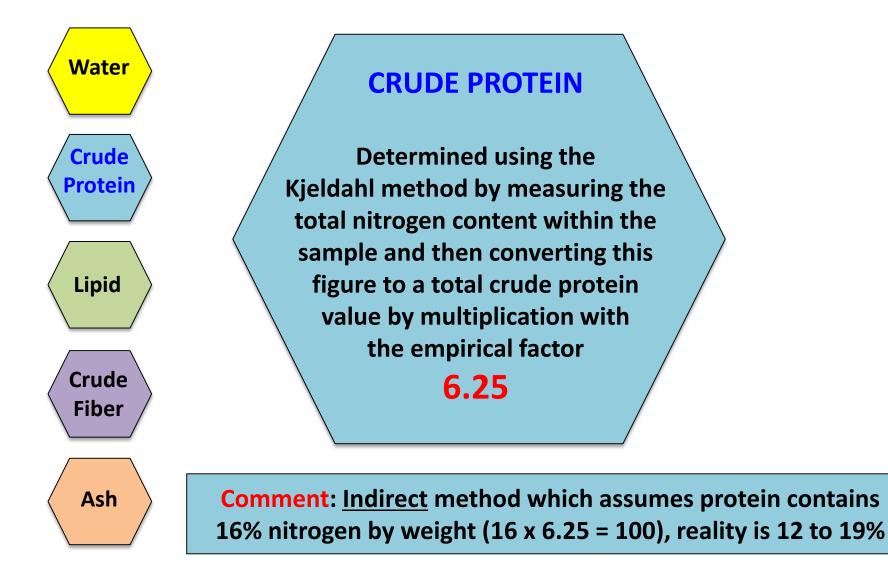
Moreover, shrimp DO NOT have a dietary requirement for protein or fat per se but for the essential amino acids and nutrients contained within these components which varies widely from ingredient to ingredient and feed to feed

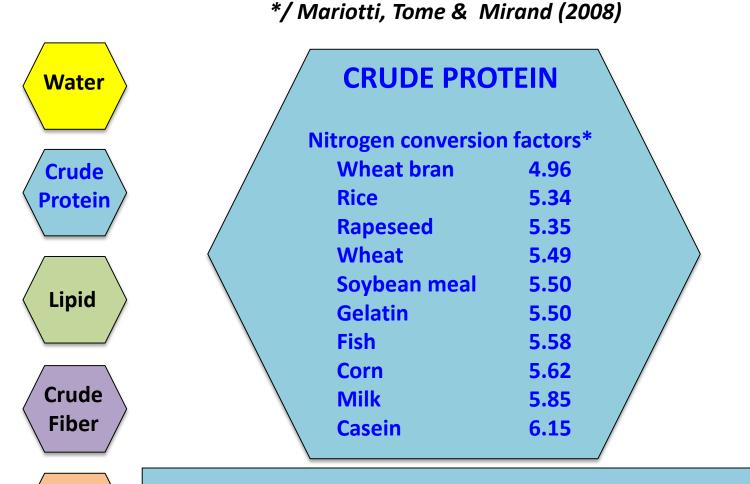
HAS BEEN SCIENTIFICALLY FORMULATED TO PROVIDE 100% COMPLETE BALANCED


PROXIMATE CHEMICAL ANALYSIS of feed ingredients and formulated feeds

15%

Meal Wheat


| L "HIGH PRO"     |                                            | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                             | 0 1 2A 2B 3A                                                                                                                      | 38 30                                                                                    |
|------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| %<br>46.0 - 48.0 | Protein                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lipid                                                                            |                                                                             | NUTRITIONAL F<br>PROTEIN :<br>FAT :<br>FIBER :<br>ASH :                                                                           | ACT<br>Min 3<br>Min 8<br>Max<br>Max<br>Max                                               |
| 0.5 - 1.5        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                             | COMPOSITIO                                                                                                                        | ON                                                                                       |
| 3.0 - 3.5        |                                            | The state of the s |                                                                                  | Flour, Soy                                                                  | Lecithin, Squid Oil, Fis                                                                                                          | h Oil, Immun                                                                             |
| 5.5 - 6.0        |                                            | 1236225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ach                                                                              |                                                                             | FEEDING SUGG                                                                                                                      | ESTION                                                                                   |
| < 12.0           | Fiber                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASII                                                                             | GOLD                                                                        | (mm)                                                                                                                              | Shrimp Size<br>(gram)                                                                    |
|                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 79-1                                                                        | Crumble 0.5 - 1.0                                                                                                                 | < 0.1<br>0.1 - 1.0                                                                       |
|                  |                                            | ALEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                             |                                                                                                                                   |                                                                                          |
|                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 70 20                                                                       |                                                                                                                                   |                                                                                          |
|                  |                                            | NFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                             | Crumble 1.5 - 2.0   Pellet 2.0 x 2.0   Pellet 2.0 x 3.0                                                                           | 4.0 - 8.0                                                                                |
|                  | %<br>46.0 - 48.0<br>0.5 - 1.5<br>3.0 - 3.5 | % Protein   46.0 - 48.0 0.5 - 1.5   3.0 - 3.5 5.5 - 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Protein   46.0 - 48.0 Protein   0.5 - 1.5 3.0 - 3.5   3.0 - 3.5 Fiber   < 12.0 | % Lipid   46.0 - 48.0 Protein Lipid   0.5 - 1.5 3.0 - 3.5 Fiber Ash   <12.0 | % Lipid   46.0 - 48.0 Protein Lipid   0.5 - 1.5 3.0 - 3.5 Fiber Ash   5.5 - 6.0 Fiber Ash Feed Code   79 - 0 79 - 0 79 - 0 79 - 0 | % Lipid   46.0 - 48.0 Protein Lipid   0.5 - 1.5 3.0 - 3.5   3.0 - 3.5 5.5 - 6.0   < 12.0 |


USE: Legal compliance for the declared proximate chemical composition of a feed ingredient or a formulated feed for the purposes of ingredient or feed registration, trade & sales



Source: adapted from Tacon (1987).







Ash

**Comment:** method <u>does not</u> distinguish between protein and <u>non-</u> protein nitrogen compounds such as <u>nucleic acids, amines, uric</u> acid, urea, ammonia, <u>ammonium salts, nitrates, adulterants</u>

# Useful publications regarding chemical methods for protein & adulterants

Mariotti, F., D. Tome & P.P. Mirand. (2008). Converting nitrogen into protein – beyond 6.25 and Jones factors. Critical Reviews in Food Science & Nutrition, 48:177-184.

Moore, J.C., J.W. DeVries, M. Lipp, J.C. Griffiths & D.R. Abernethy. (2010). Total protein methods and their potential utility to reduce the risk of food protein adulteration. Comprehensive Reviews in Food Science & Food Safety, 9(4):330–357.

Haughey, S.A., Graham, S.F., Cancouët, E. & C.T. Elliott<sup>•</sup> (2013). The application of near-infrared reflectance spectroscopy (NIRS) to detect melamine adulteration in soybean meal. Food Chemistry, 136(3-4):1557-1561

### **ADULTERATION**

Adulteration is the intentional addition of melamine and/or analogues directly to food, food ingredients, animal feed, feed ingredients or pelletizing agents. It may also be present indirectly in foods of animal origin as a result of carryover from the intentional addition to animal feed.

Adulterants may include rice hulls, oyster shell, feather meal, leather meal, ground limestone, nonprotein nitrogen such as ammonium nitrate, urea, melamine & others



### LC-MS/MS Analysis of Emerging Food Contaminants

Quantitation and Identification of Dicyandiamide in Milk and other Protein-Rich Foods

Fanny Fu<sup>1</sup> and André Schreiber<sup>2</sup> <sup>1</sup>AB SCIEX Taipei (Taiwan), <sup>2</sup>AB SCIEX Concord, Ontario (Canada)

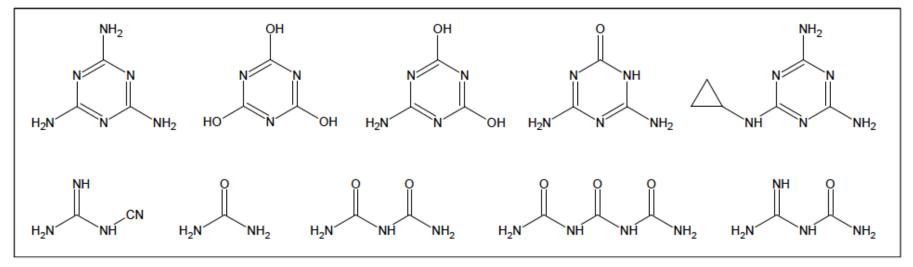



Figure 1. Potential adulterants (non-protein nitrogen sources), including melamine, cyanuric acid, ammelide, ammeline, cyromazine, dicyandiamide, urea, biuret, triuret, amidinourea, (top left to bottom right)

For Research Use Only. Not for use in diagnostic procedures.

© 2013 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX<sup>™</sup> is being used under license.

Publication number: 7170213-01



Headquarters 500 Old Connecticut Path, Framingham, MA 01701 USA Phone 508-383-7700 www.absciex.com International Sales For our office locations please call the division headquarters or refer to our website at www.absciex.com/offices



#### APPLICATION NOTE

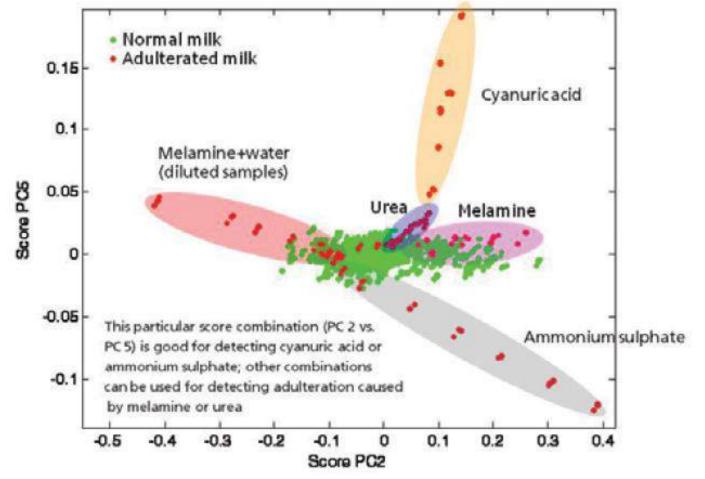
#### GC/MS Spectrometry

#### Authors

James Neal-Kababick

Flora Research Laboratories Grants Pass, OR USA

William Goodman


PerkinElmer, Inc. Shelton, CT USA

Screening for Melamine Adulteration in Protein-based Foods by GC/MS

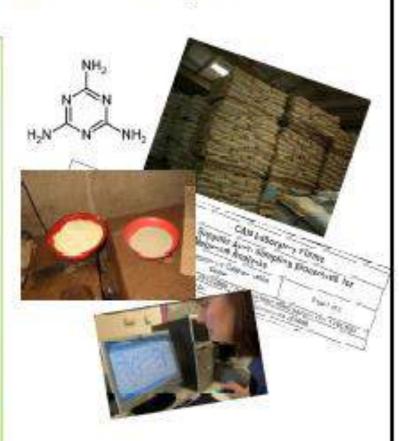


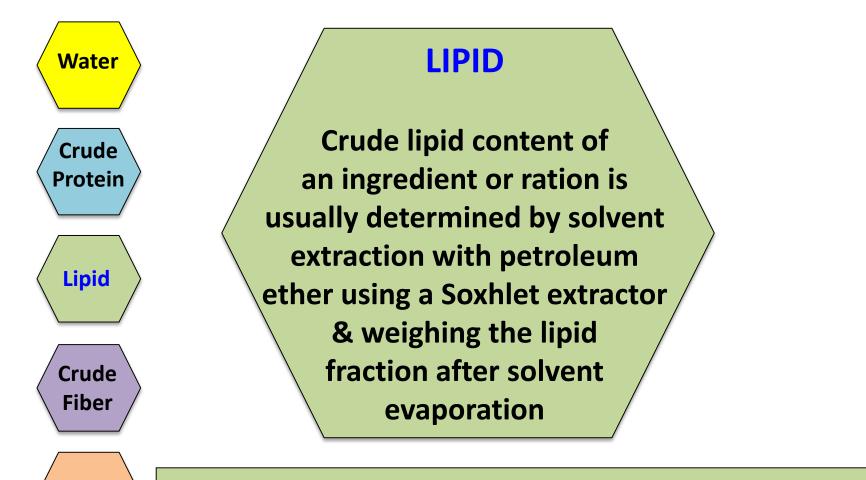
# **Protein Analysis revisited\***

Deficiencies of traditional nitrogen-based methods for detection of adulteration of food and feed have led to a search for alternative methods and an attempted redefinition of the term 'Protein'. Can traditional methods like Kjeldahl still be used? What about calibrations for indirect NIR and FTIR methods – and what are the alternatives?



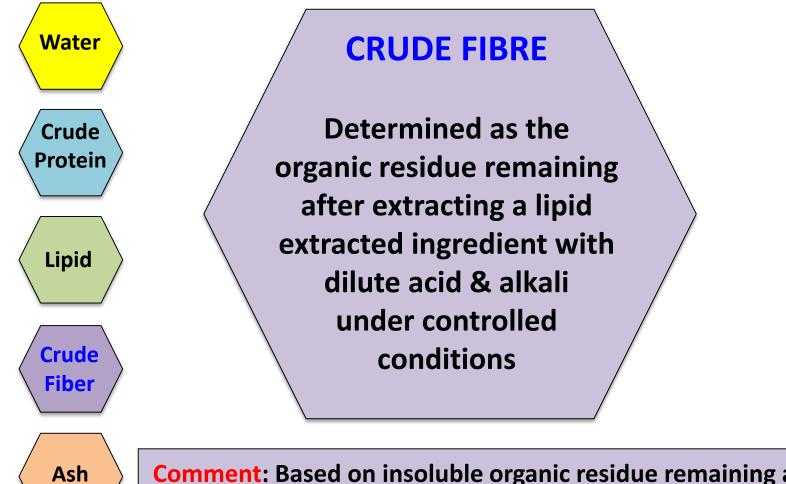
by Jürgen Möller; FOSS (jmr@foss.dk)


In Focus, Vol. 34, No 2, 2010

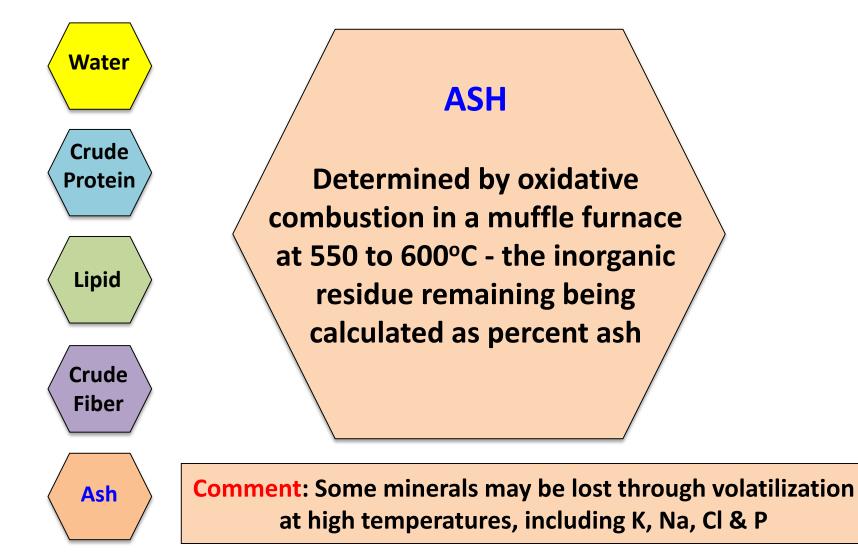

#### Best Practices in Aquaculture Supply Chain Management Dan Fegan, Cargill

## Food Safety Case Study 2

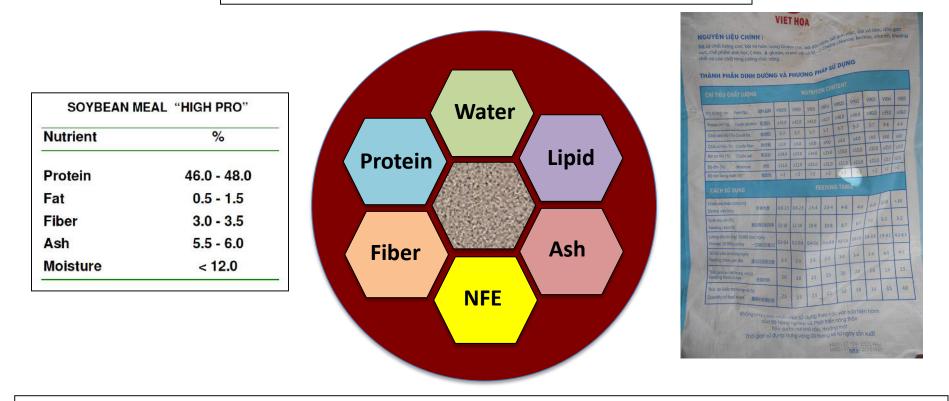
#### Melamine in feed ingredients


- Some high value feed ingredients are priced based on crude protein
- This is typically estimated from the nitrogen content
- Adulterants high in N can increase the apparent protein content
- Inorganic N (eg urea) is easy to test, organic N (eg melamine) is much more difficult and time consuming
- Cargill scientists worked to develop a simple, cheap, real time test
- This test has been widely shared to improve surveillance and monitoring of melamine adulteration





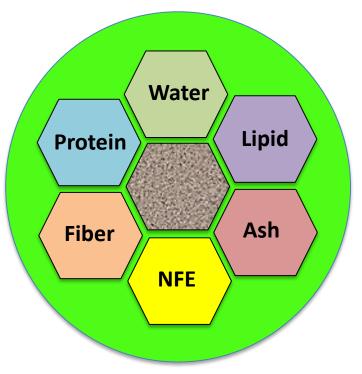

Ash


**Comment:** Direct method which usually readily extracts triglyceride fats & oils, but requires prior acid hydrolysis for complex lipids



**Comment**: Based on insoluble organic residue remaining after lipid extraction & digestion with dliute acid & alkali



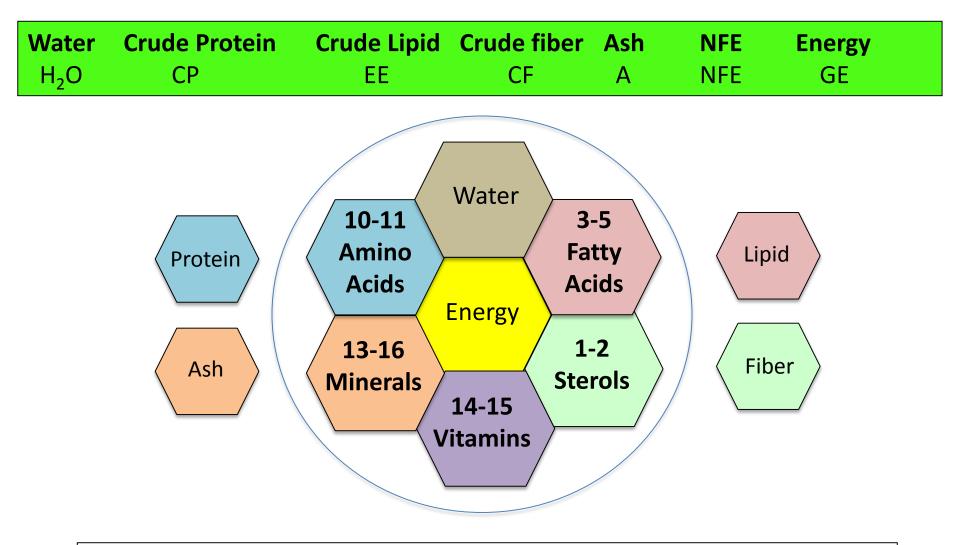

### PROXIMATE CHEMICAL ANALYSIS of feed ingredients and formulated feeds



In summary, although proximate chemical analysis is routinely used by feed laboratories for monitoring the composition of feed ingredients & finished feeds, the results have little practical value due to the non-specific nature of the methods used & the fact that no information is provided on the nutrients present or concerning their bioavailability

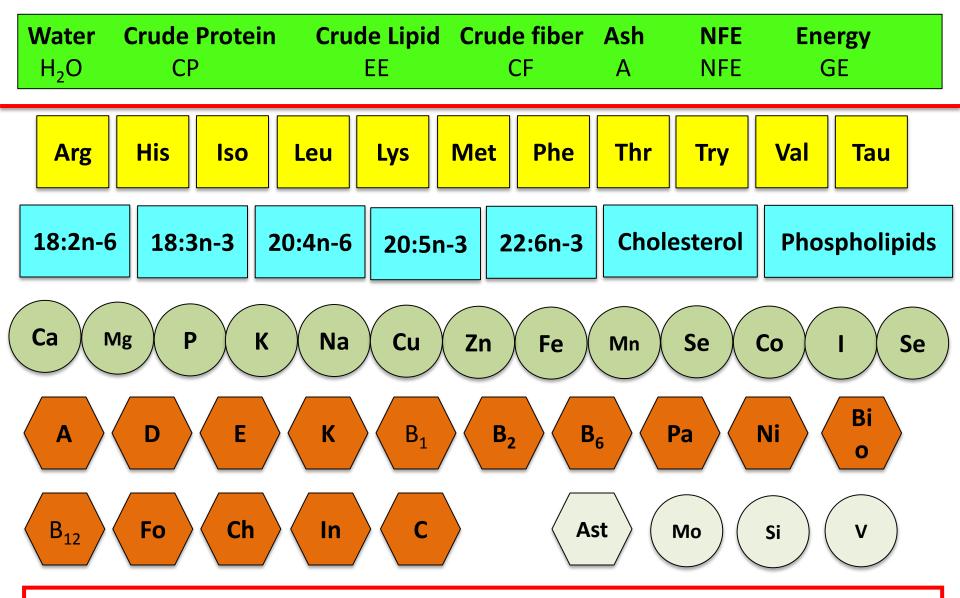
### PROXIMATE CHEMICAL ANALYSIS of feed ingredients and formulated feeds

| SOYBEAN MEAL "HIGH PRO" |                          |  |
|-------------------------|--------------------------|--|
| Nutrient                | %                        |  |
| Protein                 | 46.0 - <mark>48.0</mark> |  |
| Fat                     | 0.5 - 1.5                |  |
| Fiber                   | 3.0 - 3.5                |  |
| Ash                     | 5.5 - 6.0                |  |
| Moisture                | < 12.0                   |  |






#### We need to look at the specific nutrients present within these proximate components


| Water            | Crude Protein | Crude Lipid | Crude fiber | Ash | NFE | Energy |  |
|------------------|---------------|-------------|-------------|-----|-----|--------|--|
| H <sub>2</sub> O | СР            | EE          | CF          | А   | NFE | GE     |  |

### **Dietary nutrient requirements of shrimp & crustaceans**



**Dietary requirement for over 46-50 bioavailable essential nutrients** 

### **Dietary nutrient requirements of shrimp & crustaceans**



46-50 essential dietary nutrients present in a digestible & available form

#### THUC AN NUÔI TOM THE

### The future – full nutrient declaration?

THANG LONG

# THỨC ĂN NUÔI TÔM THỂ L. VANNAMEI SHRIMP FEED

ISO 22000 : 2005 HACCP SỐ CÔNG BỐ: TCCS-TL 01:2011/05

**KHÔI LƯỢNG TINH** 

20 km

**TT664** 

SAN PHẨM CỦA: CÔNG TY TNHH KHOA KỸ SINH VẬT THĂNG LONG Sheng long bio-tech international CO., LTD Lô A-5, KCN Đức Hòa 1, Hạnh Phúc, Ấp 5 Đức Hòa Đông, Huyện Đức Hòa, Tỉnh Long An, Việt Nam DT: (84-72) 3761358 - 3779741 - Fax: (84-72) 3761359 CÔNG TY TNHH QUỐC TẾ LONG THĂNG KCN Suối Dầu - Cam Lâm - Khánh Hòa, Việt Nam - ĐT: (84-58) 3743191 - Fax: (84-58) 3743192

te câm sử dụng trong sản xuất, kinh doang thủy sản theo các quy định hiện hành của Bộ NN & PTNT

va meu qua kinn le cho nguoi nuoi lom nham on ujun và kinh tế trong sản xuất. We develop an excellent and cost-effective Vannamei nutrition to shrimp farmers for sustainable and economic production.

THÀNH PHẦN NGUYÊN LIÊU Bột cá cao cấp, Dầu cá, Bột nội tạng mực, Bột mì, Bột đậu nành, Lecithin, Cholesterol, Vitamin và Khoáng chất.

| THÀNH PHẨN DINH DƯÔNG          |            |  |  |
|--------------------------------|------------|--|--|
| ĐỘ ẨM TỐI ĐA                   | 11%        |  |  |
| PROTEIN THÔ TỐI THIỂU          | 40%        |  |  |
| PROTEIN TIÊU HÓA TỐI THIỂU     | 38%        |  |  |
| XO THÔ TỐI ĐA                  | 4%         |  |  |
| CANXI TỐI ĐA                   | 2.3%       |  |  |
| PHOSPHO TRONG KHOÅNG           | 1.0 - 3.5% |  |  |
| LYSINE TỐI THIỂU               | 1.6%       |  |  |
| METHIONINE + CYSTINE TỐI THIỂU | 0.7%       |  |  |

#### HƯỚNG DẪN CHO ĂN

| HÌNH DẠNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Viên      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| TRONG LƯỢNG TÔM NUÔI (G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 - 7     |
| Tỷ LỆ CHO ĂN (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 - 5     |
| SỐ LẦN CHO ĂN/NGÀY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 - 4     |
| % THỨC ĂN TRONG SÀNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5       |
| THỜI GIAN KIỂM TRA (GIỜ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0 - 1.5 |
| Sector and the sector of the s |           |

#### CÁCH BẢO QUẢN

- Thời han sử dụng 3 tháng, ngày sản xuất và hạn sử dụng được in trên bao bì.

- Để ngi thoáng mát, khô ráo, tốt nhất nên sử dụng ngay sau khi mở bao.

FEED INGREDIENTS

Fish meal, Fish oil, Squid visceral meal, Wheat flour, Soybean meal, Lecithin, Cholesterol, Vitamins and Minerals.

chuyên dụng cho tôm thể

#### COMPOSITION

| Moisture (max)                 | 11%        |
|--------------------------------|------------|
| Crude protein (min)            | 40%        |
| Digestible crude protein (min) | 38%        |
| Crude fiber (max)              | 4%         |
| Canxi (max)                    | 2.3%       |
| Phospho                        | 1.0 - 3.5% |
| Lysine (min)                   | 1.6%       |
| Methionine + Cystine (min)     | 0.7%       |

#### **RECOMMENDED FEEDING GUIDE**

| Pellet    |
|-----------|
| 3-7       |
| 6 - 5     |
| 3-4       |
| 3.5       |
| 1.0 - 1.5 |
|           |

|    |     |     |     | ų v, |  |
|----|-----|-----|-----|------|--|
|    | Ch  | -   | eto | rol, |  |
| 1, | CII | ale | 910 | 101, |  |

## flour, Soybean meal, Lecithin, Vitamins and Minerals.

|      | 11%        |
|------|------------|
|      | 40%        |
|      | 38%        |
|      | 4%         |
|      | 2.3%       |
|      | 1.0 - 3.5% |
|      | 1.6%       |
| HIỂU | 0.7%       |

| COMPOSITION                    |            |
|--------------------------------|------------|
| Moisture (max)                 | 11%        |
| Crude protein (min)            | 40%        |
| Digestible crude protein (min) | 38%        |
| Crude fiber (max)              | 4%         |
| Canxi (max)                    | 2.3%       |
| Phospho                        | 1.0 - 3.5% |
| Lysine (min)                   | 1.6%       |
| Methionine + Cystine (min)     | 0.7%       |
|                                |            |

Pellet

RECOMMENDED FEEDING GUIDE



# LAGUNA TILAPIA TANQUE – REDE 32 Ração para peixes



Peso Lig.: 25 kg

- INDICAÇÃO DE USO: Ração para tilápias e outras espécie onívoras de peixes cultivadas em tanques-rede.

- COMPOSIÇÃO BÁSICA: Farelo de soja\*, milho integral moido, farelo de trigo, farinha de carne, farelo de arroz, farinha de penas hidrolisadas, farelo de glúten de milho - 21\*\*, farelo de algodão\* \*\*, farinha de sangue, farinha de visceras, óleo de soja degomado, calcário calcítico, cloreto de sódio (sal comun), monóxido de manganês, sultato de terro, óxido de zinco, iodato de cálcio, sultato de cobre, selenito de sódio, sultato de cobalto, vitamina A, vitamina D3, vitamina E, vitamina K3, vitamina B1, vitamina B2, niacina, ácido pantotênico, vitamina B6, ácido fólico, biotina, vitamina B12, cloreto de colina, vitamina C, lisina, metionina, ácido propiónico, silimarina, etoxicuin, hidróxido de anizola butilado (BHA). Espécies doadoras do gene: "Agrobacterium tumetaciens \*\*Bacillus thuringiensis.

- EVENTUAIS SUBSTITUTIVOS: Farinha de trigo, farelo de glúten de milho - 60, farelo de milho, fosfato bicalcico, proteína concentrada de soja, óleo de salmão, levedura seca de cana de açúcar, gérmen de milho, soja integral extrusada, farinha de peixe salmão, óleo de peixe refinado, lecitina de soja, hidróxido de tolueno butilado (BHT).

- NIVEIS DE GARANTIA: Umidade (máx) 80,00 g/kg; proteína bruta (mín) 320,00 g/kg; extrato etéreo (mín) 60,00 g/kg; fibra bruta (máx) 60,00 g/kg; matéria mineral (máx) 105,00 g/kg; cálcio (mín) 10,00 g/kg; cálcio (máx) 20,00 g/kg; tóstoro (mín) 6.000,00 mg/kg; sodio (min) 2.200,00 mg/kg; terro (min) 30,00 mg/kg; cobre (min) 5,00 mg/kg; manganes (min) 30,00 mg/kg; zinco (min) 60,00 mg/kg; iodo (min) 1,00 mg/kg; cobalto (min) 0,10 mg/kg; selênio (min) 0,30 mg/kg; vitamina A (min) 12,000,00 Ul/kg; vitamina D3 (min) 2.400,00 UI/kg; vitamina E (min) 50,00 UI/kg; vitamina K3 (min) 5,00 mg/kg; vitamina B1 (min) 10,00 mg/kg; vitamina B2 (mín) 20,00 mg/kg; niacina (mín) 100,00 mg/kg; acido pantotênico (mín) 50,00 mg/kg; vitamina B6 (mín) 10,00 mg/kg; acido fólico (mín) 4,00 mg/kg; biotina (mín) 0,24 mg/kg; vitamina B12 (mín) 40,00 mcg/kg; colina (mín) 500,00 mg/kg;

vitamina C (min) 350,00 mg/kg; lisina (min) 18,50 g/kg; metionina (min) 6.500,00 mg/kg. - MODO DE USAR: Distribuir aos peixes acima de 260 gramas de peso. A quantidade diária oferecida deve variar de 4 a 5% da

biomassa dividida em 2 porcões. Uso proibido na alimentação de ruminantes. - PRODUTO ISENTO DE REGISTRO NO MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO.

LOTE: 05EX120028748 FAB: 30/10/2012 B COD: 01.6151.40.25 VAL: 28/04/2013

#### Vitalis 2.5

#### Alimento para Reproductores de Camarão

#### COMPOSIÇÃO BÁSICA DO PRODUTO :

FARINHA DE PEIXE, GLÜTEN DE TRIGO, ALGAS MARINHAS CALCARIAS, AMIDO DE MILHO, OLEO DE PEIXE REFINADO, LECITINA DE SOJA, VITAMINAS, MINERALES

#### **EVENTUAIS SUBSTITUVOS :**

ASTAXANTINA

| NÍVEIS DE GARANTIA POR QUILOGRAMA DO PRODUTO : |             |                       |                |  |  |  |  |
|------------------------------------------------|-------------|-----------------------|----------------|--|--|--|--|
| UMIDADE (MÁXIMO) :                             | 75g         | MANGANÊS (MÍNIMO) :   | 35,00 mg       |  |  |  |  |
| PROTEÍNA BRUTA (MÍNIMO) :                      | 590,00g     | SELÊNIO (MÍNIMO) :    | 0,20 mg        |  |  |  |  |
| EXTRATO ETÈREO (MÍNIMO) :                      | 110,00g     | VITAMINA A (MÍNIMO) : |                |  |  |  |  |
| MATERIAL MINERAL (MÁXIMO) :                    | 110,50g     | VITAMINA D3 (MÍNIMO)  | : 2.500,00 U.I |  |  |  |  |
| MATÉRIA FIBROSA (MÁXIMO) :                     | 3.000,00 mg | ZINCO (MÍNIMO) :      | 100,00 mg      |  |  |  |  |
| CALCIO (MINIMO) :                              | 15,00g      | FERRO (MINIMO) :      | 75,00 mg       |  |  |  |  |
| CÁLCIO (MÁXIMÓ) :                              | 25,00g      | VITAMINA E (MINIMO) : | 600,00 UI      |  |  |  |  |
| FÓSFORO (MÍNIMO) :                             | 13,00g      | VITAMINA C (MINIMO) : | 1.000,00 mg    |  |  |  |  |
| IODO (MÍNIMO) :                                | 3,00 mg     | COBRE (MÍNIMO) :      | 10,00 mg       |  |  |  |  |

INDICAÇÃO DE USO/ESPÉCIE A QUE SE DESTINA : INDICADO COMO ALIMENTO PARA MATURAÇÃO DE REPRODUTORES DE CAMARÃO. MODO DE USAR : ALIMENTAR A VONTADE ATÉ APROXIMADAMENTE 5% DA BIOMASSA/DIA.

USO PROIBIDO NA ALIMENTAÇÃO DE RUMINANTES.

CONDIÇÕES DE CONSERVAÇÃO : ARMAZENAR EM LOCAL SECO E FRESCO.

#### **PESO LÍQUIDO :**

#### 10 KG

PRODUTO FABRICADO 24 MESES ANTES DA DATA DE EXPIRAÇÃO.

#### CONSUMIR DE PREFERÊNCIA ANTES : 06-11-15

#### NUMERO DE LOTE : 7190032

PRODUTO IMPORTADO ISENTO DE REGISTRO NO MINISTERIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO

IMPORTADOR/DISTRIBULDOR : NUTRECO BRASIL NUTRIÇÃO ANIMAL LTDA Endereço :Via Ligação I, No 900 / Distrito Industrial III / Maracanau- Ceará - Brasil CEP. 61.921.520 / SIF : CE-06479 / CNPJ- 03.022.008/0007-32 / INSCRIÇÃO ESTADUAL - 06.624.778-0

#### FABRICANTE / EXPORTADOR : TROUW FRANCE S.A.

Spécialités Alimentaires pour l'Aquaculture 02140 VERVINS - TEL : 03 23 91 34 34 - R.C.835.680.125 B / N° AGREMENT : Alpha FR 02 321 001

### National standard vannamei feeds Vietnam 2014

Source: Ministry of Agriculture Vietnam

- 1. Physical parameters
  - Pellet size
  - fines
  - Water stability
- 2. Nutritional specifications
  - Proximate composition
  - Lys/Met
  - Ca/P
- 3. Ingredient quality
  - NaCl
  - sand
- 4. Feed/food safety
  - Microbiology
  - Melamine
  - Antibiotics

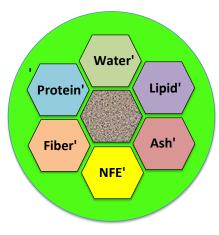
| No.  | T4                                      | Vannamei             |                      |                      |        |        |        |
|------|-----------------------------------------|----------------------|----------------------|----------------------|--------|--------|--------|
| 140. | Item                                    | No.1                 | No.2                 | No.3                 | No.4   | No.5   | No.6   |
|      | Approval                                |                      |                      |                      |        |        |        |
|      | Size/Shape                              | Crumble<br>or Pellet | Crumble<br>or Pellet | Crumble<br>or Pellet | Pellet | Pellet | Pellet |
| 1    | - Diameter                              | 0.6                  | 0.8                  | 1.2                  | 1.8    | 2.2    | 2.5    |
|      | - Length<br>Standard: Length / Diameter | 1.5-2                | 1.5-2                | 1.5-2                | 1.5-2  | 1.5-2  | 1.5-2  |
|      | Crumble rate (%), max                   | 1                    | 1                    | 1                    | 1      | 1      | 1      |
| 2    | Weight of shrimp/fish (g/pc)            | 0.1-1                | 1-3                  | 3-8                  | 8-12   | 12-20  | > 20   |
| 3    | Stability (hrs, min)                    | 1-2                  | 1-2                  | 1-2                  | 1-2    | 1-2    | 1-2    |
| 4    | Metabolizable energy (Kcal/kg)          |                      |                      |                      |        |        |        |
| 6    | Moisture (max)                          | 11                   | 11                   | 11                   | 11     | 11     | 11     |
| 7    | Protein (min)                           | 38                   | 36                   | 34                   | 34     | 33     | 32     |
| 8    | Digestible protein (min)                |                      |                      |                      |        |        |        |
| 9    | Crude fat (min)                         | 5-7                  | 5-7                  | 5-7                  | 4-6    | 4-6    | 4-6    |
| 10   | Crude fiber (max)                       | 3                    | 4                    | 4                    | 4      | 4      | 4      |
| 11   | Ash (max)                               | 14                   | 14                   | 15                   | 15     | 16     | 16     |
| 12   | Sand (Max)                              | 1                    | 1.2                  | 1.3                  | 1.5    | 1.5    | 1.7    |
| 13   | Calcium (max)                           | 2.3                  | 2.3                  | 2.3                  | 2.3    | 2.3    | 2.3    |
| 14   | Total phosphorus (max)                  |                      |                      |                      |        |        |        |
| 15   | Ca/P                                    | 1-1.5                | 1-1.5                | 1-1.5                | 1-1.5  | 1-1.5  | 1-1.5  |
| 16   | NaCl                                    | 2                    | 2                    | 2                    | 2      | 2      | 2      |
| 17   | Lysin (min)                             | 1.8                  | 1.8                  | 1.7                  | 1.6    | 1.5    | 1.5    |
| 18   | Methionine (min)                        | 0.8                  | 0.8                  | 0.7                  | 0.7    | 0.6    | 0.6    |
| 19   | Insect                                  | ND                   |                      |                      |        |        |        |
| 20   | Salmonella                              | ND                   |                      |                      |        |        |        |
| 21   | Aspergillus flavus                      | ND                   |                      |                      |        |        |        |
| 22   | Aflatoxin B1 (ppb) (max)                | 10                   |                      |                      |        |        |        |
| 23   | Melamine (ppm) (max)                    | 2.5                  |                      |                      |        |        |        |
| 24   | Antibiotic                              | ND                   |                      |                      |        |        |        |

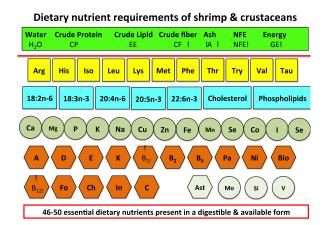
#### Source: Coutteau & Wu (2015)



**1** - Improved labeling & reporting of nutrient levels within feed ingredients & shrimp feeds for the benefit of the feed compounder, farmer & consumer - including (total or added)

including


Amino acids: Methionine, Lysine, Threonine, Histidine, Taurine etc <u>Fatty acids</u>: 18:2n-6, 18:3n-3, 20:4n-6, 20:5n-3, 22:6n-3 <u>Vitamins</u>: A, D, E, K, C, B<sup>1</sup>, B<sup>2</sup>, B<sup>6</sup>, B<sup>12</sup>, Biotin, Choline, Inositol etc <u>Minerals</u>: Ca, P, Mg, K, NaCl, Fe, Zn, Mn, Cu, Co, I, Se, Cr, Mo etc <u>Feed additives</u>: Enzymes, Antioxidants, Binders, Probiotics etc <u>Energy</u>: Gross & estimated digestible or metabolizable energy


- Use of specific controlled feed ingredients (GMO, ruminant etc)
- Estimated bioavailability of key nutrients pepsin digestibility
- Absence of specific adulterants melamine, urea, mycotoxins

### **Recent developments in shrimp feeds & feeding**



- Improved labeling & reporting of nutrient levels within feed ingredients & shrimp feeds
- Improved feed formulation & reduced use of wild fish in shrimp feeds
- Improved on-farm feed management practices tailored to the needs of small-scale shrimp farmers





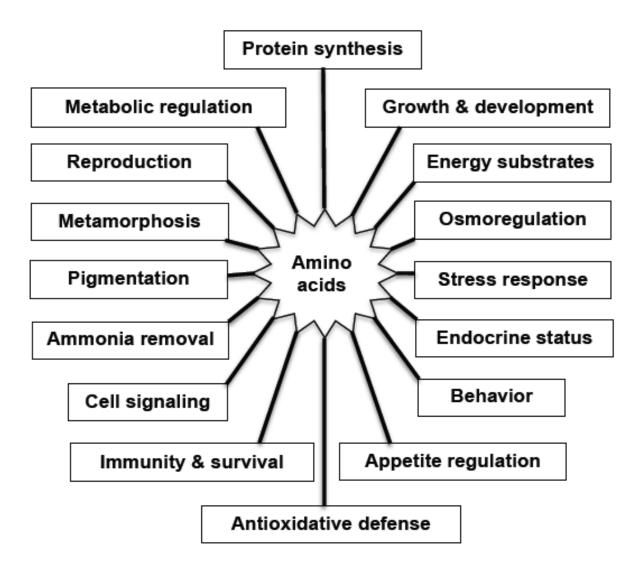


### **Recent developments in shrimp feeds & feeding**



- 2 Improved feed formulation and reduced use of wild fish in shrimp feeds through:
- the blending of different animal & plant feed ingredients with complementary dietary EAA profiles tailored to the EAA requirements of shrimp;
- the use of specific feed additives to make up the nutrient deficiencies within existing fishmeal replacers, including use of limiting EAA, trace minerals, sterols, emulsifiers, enzymes & feeding attractants;
- the determination of EAA bioavailability within feed ingredients & finished feeds using a combination of in-vivo digestibility techniques (through fecal collection) and in-vitro digestibility/hydrolysis techniques (through NIRs or pepsin digestibility);

Shrimp & fish do not have a dietary requirement for protein *per se* but for the essential amino acids contained in the protein


In general the nutritive value and ultimate biological value of a dietary protein source, whether it be fishmeal or soybean meal, will largely be determined by its amino acid composition, and in particular by its essential amino acid (EAA) profile, and their consequent biological availability to the animal – the closest that the EAA profile of the feed ingredient approximates to the EAA requirements of shrimp, the higher will be its nutritional value;

Essential amino acids can be defined as those amino acids that cannot be synthesized within the animal body or at a rate sufficient to meet the physiological needs of the growing animal, and must therefore be supplied in a ready made form in the diet.

# Reported dietary essential & non-essential amino acids for fish & crustaceans (modified after Li et al. 2008; Wu, 2009)

| Essential amino acids - EAA                                                                                                                                                              | Conditionally essential amino acids                                                                                  | Non-essential amino acids                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Arginine (Arg)<br>Histidine (His)<br>Isoleucine (Iso)<br>Leucine (Leu)<br>Lysine (Lys)<br>Methionine (Met)<br>Phenylalanine (Phe)<br>Threonine (Thr)<br>Tryptophan (Trp)<br>Valine (Val) | Cysteine (Cys)<br>Glutamine (Gln)<br>Glycine (Gly)<br>Hydroxyproline (Hyp)<br>Proline (Pro)<br>Taurine <sup>1/</sup> | Alanine (Ala)<br>Asparagine (Asn),<br>Aspartate (Asp)<br>Glutamate (Glu)<br>Serine (Ser)<br>Tyrosine (Tyr) |

<sup>1/</sup> Taurine or 2-aminoethanesulfonic acid is a derivative of cysteine



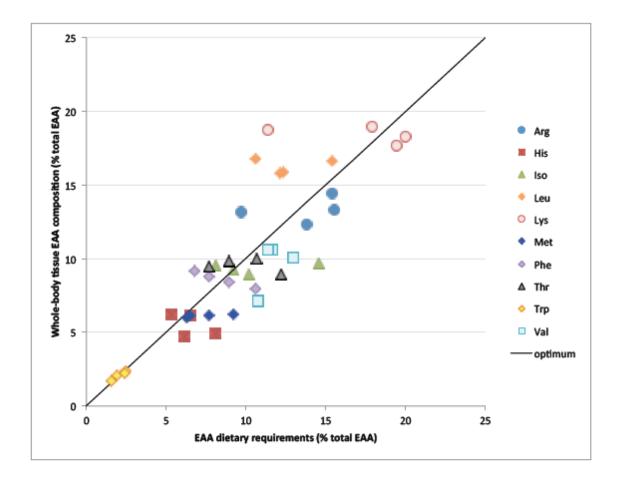
Reported roles of amino acids in the growth, development and health of fish (modified after Li et al. 2008)

#### Reported major functions & metabolites produced from amino acids (modified after Li et al. 2008 & Wu, 2009).

#### **Functions**

- Ammonia detoxification (glutamate, glutamine, citrulline);
- Antioxidative defense (glutathione, cysteine, glutamine, glycine, taurine);
- Appetite stimulation (Alanine, glutamate, proline, serine);
- Cell signaling (nitric oxide, arginine, glutamine, leucine, proline, polyamines);
- Energy utilization (nitric oxide, thyroxine, carnitine);
- Growth regulation (arginine, glutamine, hydroxyproline, leucine, thyroxine);
- Gut development (taurine, glutamine, arginine, threonine, polyamines);
- Immunity (nitric oxide, arginine, glutamine, dopamine);
- Metamorphosis (tyrosine, thyroxine, γ-Aminobutyrate);
- Neural development (nitric oxide, arginine, taurine, creatine);
- Osmoregulation (glycine, taurine, β-Alanine, arginine);
- Pigmentation (thyroxine, melanin);
- Reproduction (nitric oxide, polyamines, arginine, melatonin, hydroxyproline);
- Stress responses (tryptophan, serotonin, leucine, isoleucine, valine, glutamine);
- Suppression of aggressive behavior (tryptophan, serotonin)

### Reported major functions & metabolites produced from amino acids (modified after Li et al. 2008 & Wu, 2009).


### **Metabolites**

- β-Alanine: Dipeptides (carnosine, carcinine, anserine, balenine), component of coenzyme A and pantothenic acid;
- Arginine: Nitric oxide, citrulline, ornithine, proline, glutamate, polyamines, creatine;
- Aspartate: Purine, pyrimidine, asparagine, arginine, inositol, β-Alanine;
- Cysteine: Taurine, glutathione, SO<sub>4</sub>, H<sub>2</sub>S;
- Glutamate: Glutamine, citrulline, argine, γ-Aminobutyrate, glutathione;
- Glutamine: Purine, pyrimidine, ornithine, citrulline, arginine, proline, asparagines, amino sugars (glucosamine), ammonia;
- Glycine: Creatine, glutathione, purines, porphyrins, heme (hemoproteins);
- Histidine: Histamine, carnosine, anserine, balenine, 3-methylhistidine, urocanic acid;
- Isoleucine: Glutamine, alanine;
- Leucine: Glutamine, alanine, hydroxyl-β-methyl-butyrate;
- Lysine: Cadaverine (polyamine), carnitine, trimethyllysine, OH-lysine;

### Reported major functions & metabolites produced from amino acids (modified after Li et al. 2008 & Wu, 2009).

### **Metabolites**

- Methionine (EAA): Homocysteine, betaine, choline, cysteine, S-Adenosyl methionine (the source of methyl groups for methylations), creatine, polyamines (spermine and spermidine), taurine, phospholipids, carnatine;
- Phenylalanine (EAA): Tyrosine, melatonin;
- Proline (cEAA): H<sub>2</sub>O<sub>2</sub>; P5C (Pyrroline-5-carboxylate), hyroxyproline;
- Serine (NEAA): Cysteine, purine, pyrimidine, ceramide, lipoproteins (Phosphatidylserine, phosphatidyl-ethanolamine), glycine, carnitine;
- Threonine (EAA): Glycine, mucin protein;
- Tryptophan (EAA): Niacin, serotonin, tryptamine, N-acetylserotonin, anthranilic acid;
- Tyrosine (NEAA): Dopa (3,4 dihydroxyphenylanaine), dopamine, norepinephrine, epinephrine, melanin, triiodothyroxine, thyroxine); and
- Valine (EAA): Glutamine, alanine.



Relationship between pattern of essential amino acid (EAA) requirements of four major cultured fish species and the profile of the same amino acids in the whole-body fish carcass of the same species. The line represents coincidence of requirement and tissue pattern.

(data expressed as % total EAA for Rainbow trout, Channel catfish, Common carp and Tilapia)

| Amino acid (AA)                                     | RaT <sup>1</sup>  | AtS <sup>1</sup>  | ChC <sup>1</sup>  | LaB <sup>1</sup>   | CoC <sup>2</sup>   | Til <sup>2</sup>        | StB <sup>2</sup>    | Mil <sup>2</sup>    | Fish <sup>3</sup>              | Shrimp <sup>3</sup> | WhS <sup>4</sup>       |
|-----------------------------------------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------------|---------------------|---------------------|--------------------------------|---------------------|------------------------|
| Alanine (NEAA<br>Arginine (EAA)<br>Aspartate (NEAA) | 6.6<br>6.4<br>9.9 | 6.5<br>6.6<br>9.9 | 6.3<br>6.7<br>9.7 | 6.0<br>8.5<br>11.8 | 6.3<br>6.2<br>10.6 | 6.2<br>6.4<br>11.6      | 6.3<br>6.2<br>10.6  | 6.3<br>6.2<br>10.6  | 6.6<br>6.6<br>9.8              | 6.1<br>8.3<br>10.5  | 56<br>89<br>? <b>1</b> |
| Cystei`ne (cEAA)<br>Glutamate (NEAA)                | 0.8<br>14.2       | 1.0<br>14.3       | 0.9<br>14.4       | 0.8<br>13.3        | 1.1<br>15.5        | 1.1<br>16.2             | 10.0<br>1.1<br>15.5 | 10.6<br>1.1<br>15.4 | 1.0<br>15.3                    | 1.0<br>15.8         | 1.0<br>14.9            |
| Glycine (cEAA)<br>Histidine                         | 7.8<br>3.0        | 7.4<br>3.0        | 8.1<br>2.2        | 7.8<br>2.1         | 5.0<br>3.1         | 5.2<br>2.4              | 5.0<br>3.1          | 5.0<br>3.1          | 7.3<br>2.6                     | 6.3<br>2.3          | 7.5<br>2.2             |
| Isoleucine<br>Leucine                               | 4.3<br>7.6        | 4.4<br>7.7        | 4.3<br>7.4        | 4.0<br>8.0         | 4.8<br>8.4         | 4.7<br>8.1              | 4.8<br>8.4          | 4.8<br>8.4          | 4.6<br>7.7                     | 4.5<br>7.7          | 4.1<br>7.2             |
| Lysine<br>Methionine                                | 8.5<br>2.9        | 9.3<br>1.8        | 8.5<br>2.9        | 8.1<br>2.6         | 9.5<br>3.1         | 9.1<br>3.0              | 9.5<br>3.1          | 9.5<br>3.1          | 7.9<br>2.9                     | 8.1<br>2.7          | 5.3<br>2.1<br>5.5      |
| Phenylalanine<br>Proline (cEAA)                     | 4.4<br>4.9<br>4.7 | 4.4<br>4.6<br>4.6 | 4.1<br>6.0        | 4.0<br>6.0         | 4.0<br>3.7         | 4.1<br>3.8              | 4.0<br>3.7          | 4.1<br>3.7          | 4.4<br>4.7                     | 4.3<br>3.9          | <mark>7.0</mark>       |
| Serine (NEAA)<br>Threonine<br>Tryptophan            | 4.7<br>4.8<br>1.0 | 5.0<br>0.9        | 4.9<br>4.4<br>0.8 | 4.2<br>4.4<br>0.9  | 4.2<br>4.5<br>1.2  | 4.1<br>4.8<br>1.1       | 4.2<br>4.5<br>1.2   | 4.2<br>4.5<br>1.2   | <mark>4.4</mark><br>4.7<br>1.1 | 4.1<br>4.0<br>1.1 ↓ | 4.2<br>4.1<br>0.9 ?↓   |
| Tyrosine (NEAA)<br>Valine                           | 3.4<br>5.1        | 3.5<br>5.1        | 3.3<br>5.2        | 2.8<br>4.6         | 3.5<br>5.3         | <mark>3.4</mark><br>4.9 | 3.5<br>5.3          | 3.5<br>5.3          | 3.2<br>5.1                     | 4.1<br>5.0          | 4.2<br>4.5             |
| Sum EAA                                             | <mark>48.0</mark> | <mark>48.2</mark> | <mark>46.5</mark> | 47 <b>.2</b>       | 50.1               | <mark>48.6</mark>       | 50.1                | 50.2                | <mark>47.6</mark>              | 48.0                | 44.8                   |

### Reported whole-body AA composition (g AA/100g total AA) of different fish & shrimp

<sup>1</sup>NRC (2011) where RT is Rainbow trout, AS is Atlantic salmon, CC is Channel catfish, LB is Largemouth bass; <sup>2</sup>USDA/ARS (2011) where CoC is Common carp, Til is Tilapia, StB is Striped bass, and Mil is Milkfish – all data is for 100g edible portion; <sup>3</sup>Kaushik & Seiliez (2010) where Fish & Shrimp represent means for numerous published analyses for cultured fish and Penaeid shrimp species; <sup>4</sup>WhS – Pacific white shrimp – whole (Tacon et al. 2002)

| Essential amino acids          | Arg      | Cys    | Met              | Thr    | lso   | Leu    | Lys              | Val    | Tyr             | Try     | Phe             | <mark>His</mark> |
|--------------------------------|----------|--------|------------------|--------|-------|--------|------------------|--------|-----------------|---------|-----------------|------------------|
| Fishery products               | Meth     | ionine | e: 90-2          | 209, L | ysine | 107-14 | 6, Thr           | eonine | e 87-10         | )7, His | tidine          | 95-27            |
| Anchovy fishmeal               | 59       | 95     | <b>140</b>       | 106    | 112   | 106    | <b>143</b>       | 116    | 82              | 128     | 83              | 112              |
| Menhaden fishmeal              | 63       | 90     | <b>138</b>       | 101    | 115   | 106    | <b>146</b>       | 118    | 78              | 122     | 81              | 109              |
| Herring fishmeal               | 64       | 100    | <mark>140</mark> | 104    | 107   | 104    | <b>143</b>       | 127    | 76              | 122     | 78              | 109              |
| Tuna fishmeal                  | 66       | 85     | 129              | 107    | 110   | 99     | 143              | 113    | 77              | 117     | 81              | 151              |
| White fishmeal                 | 72       | 110    | <mark>138</mark> | 107    | 107   | 103    | <mark>145</mark> | 111    | 76              | 117     | 77              | 105              |
| Fish solubles, condensed       | 65       | 100    | 136              | 87     | 96    | 106    | 136              | 111    | 40              | 128     | 78              | 272              |
| Fish soluble, dehydrated       | 66       | 140    | <mark>117</mark> | 105    | 105   | 95     | <mark>145</mark> | 102    | 49              | 261     | 70              | 198              |
| Shrimp meal (process residue)  | 86       | 125    | 102              | 106    | 111   | 101    | 107              | 112    | <mark>79</mark> | 100     | <mark>99</mark> | 112              |
| Shrimp head meal               | 86<br>63 | 85     | 209              | 96     | 93    | 87     | 110              | 108    | 98              | 117     | 136             | 100              |
| Krill meal                     | 64       | 122    | <b>137</b>       | 102    | 117   | 103    | <mark>135</mark> | 107    | 94              | 121     | 90              | 95               |
| Squat lobster/langostilla meal | 58       | 100    | 90               | 104    | 102   | 91     | 122              | 122    | 117             | 150     | 87              | 188              |
| Squid meal                     | 65       | 140    | 107              | 106    | 96    | 98     | <b>125</b>       | 102    | 100             | 178     | 85              | 172              |
| Squid liver meal               | 63       | 120    | 112              | 96     | 121   | 91     | 112              | 99     | 76              | 244     | 86              | 230              |

Ingredient scores calculated against the estimated EAA dietary requirement profile of White shrimp expressed as % total amino acids: Arg 9.70%, Cys 1.03%, Met 2.13%, Thr 4.0%, Iso 4.13%, Leu 7.13%, Lys 5.35%, Val 4.57%, Tyr 4.13%, Tryp 0.91%, Phe 4.97%, His 2.16% & Tau 0.75%; Source: Tacon et al. (2002) – Aquaculture Nutrition 8:121-137).

| Essential amino acids                                                       | Arg             | Cys              | Met             | Thr                  | <mark>lso</mark>              | Leu               | Lys               | Val               | Tyr                   | Try             | Phe             | <u>His</u>       |
|-----------------------------------------------------------------------------|-----------------|------------------|-----------------|----------------------|-------------------------------|-------------------|-------------------|-------------------|-----------------------|-----------------|-----------------|------------------|
| livesteek producte                                                          |                 |                  | 22.0            |                      |                               |                   |                   |                   | 4.405                 |                 | -               | 200              |
|                                                                             |                 |                  |                 |                      |                               | -                 |                   |                   | -                     | Histid          |                 | _                |
| Blood meal, spray dried (BM)                                                | 37              | 83               | 38              | 94                   | 23                            | 158               | <mark>135</mark>  | 167               | 55                    | 127             | 122             | 209              |
| Feather meal, hydrolyzed (HFM)                                              | 79              | 424              | 33              | 119                  | 117                           | 122               | 49                | 166               | 72                    | 83              | 85              | 46               |
| Meat and bone meal (MBM)                                                    | 85              | <mark>122</mark> | 82              | <mark>104</mark>     | <mark>93</mark>               | <mark>110</mark>  | 125               | 127               | <mark>69</mark><br>53 | <mark>94</mark> | <mark>87</mark> | 119              |
| Meat meal (MM)                                                              | 86              | 146              | 80              | 97                   | 100                           | 106               | <mark>138</mark>  | 129               |                       | 100             | 85              | 107              |
| Poultry byproduct meal (PBM)                                                | 80              | 171              | 99              | 104                  | 109                           | 114               | 114               | 122               | 63                    | 99              | 84              | 109              |
| BM:HFM (1:1 ∑AA basis) – blend A                                            | 58              | 253              | 35              | 106                  | 70                            | 140               | 92                | 166               | 63                    | 105             | 103             | 127              |
| A:PBM (1:1) – blend B                                                       | 98              | 212              | <mark>67</mark> | 105                  | 89                            | 127               | <b>103</b>        | <mark>144</mark>  | <mark>63</mark>       | 102             | <mark>93</mark> | 118              |
| A:PBM (1:1) – blend B                                                       | <mark>98</mark> | 212<br>onine:    | 67<br>61-93     | <b>105</b><br>3, Lys | <mark>89</mark><br>ine 11     | 127<br>8-140,     | 103<br>Threo      | 144<br>nine 2     | 63<br>7-125,          | 102<br>, Histic | <mark>93</mark> | 1<br>8-19        |
| Soldior fly Januar                                                          | <b>E0</b>       | 21               | 02              | 27                   | 107                           | 100               | 140               | 164               |                       |                 |                 | 10               |
| Soldier fly larvae                                                          | 50              | 21               | 93              | 27                   | 107                           | 108               | 140               | 164               | 134                   |                 |                 |                  |
| Soldier fly larvae<br><mark>Earthworm meal</mark><br>Marine polychaete meal | 50<br>85<br>84  | 21<br>122<br>102 | 93<br>82<br>61  | 27<br>104<br>125     | 107<br><mark>93</mark><br>108 | 108<br>110<br>114 | 140<br>125<br>118 | 164<br>127<br>115 | 69<br>89              | 94<br>88        | 87<br>79        | 194<br>119<br>98 |

Ingredient scores calculated against the estimated EAA dietary requirement profile of White shrimp expressed as % total amino acids: Arg 9.70%, Cys 1.03%, Met 2.13%, Thr 4.0%, Iso 4.13%, Leu 7.13%, Lys 5.35%, Val 4.57%, Tyr 4.13%, Tryp 0.91%, Phe 4.97%, His 2.16% & Tau 0.75%; Source: Tacon et al. (2002) – Aquaculture Nutrition 8:121-137).

|--|

### Protein-rich cereal products Methionine: 75-120, Lysine 30-128, Threonine 82-135, Histidine 70-163

| Brewers grains (5-02-141)      | 49 | 127 | 80  | 89  | 143 | 137 | 64              | 133 | 113 | 155 | 112 | 93  |
|--------------------------------|----|-----|-----|-----|-----|-----|-----------------|-----|-----|-----|-----|-----|
| Corn gluten feed               | 49 | 249 | 116 | 107 | 91  | 155 | <mark>59</mark> | 125 | 97  | 99  | 87  | 158 |
| Corn gluten meal (60% protein) | 32 | 166 | 120 | 82  | 93  | 221 | 30              | 100 | 123 | 61  | 122 | 93  |
| Corn DDGS                      | 45 | 156 | 99  | 102 | 132 | 196 | 53              | 140 | 81  | 66  | 124 | 126 |
| Corn germ meal                 | 64 | 249 | 139 | 135 | 85  | 110 | 80              | 131 | 67  | 121 | 82  | 163 |
| Leaf protein concentrate       | 60 | 78  | 75  | 112 | 108 | 120 | 111             | 127 | 89  | 149 | 113 | 95  |
| Potato protein concentrate     | 41 | 146 | 106 | 114 | 123 | 115 | 121             | 107 | 125 | 110 | 109 | 70  |
| Wheat germ meal                | 85 | 190 | 87  | 108 | 92  | 87  | 128             | 116 | 80  | 144 | 86  | 128 |
| Wheat gluten meal              | 48 | 283 | 99  | 85  | 115 | 131 | 41              | 113 | 112 | 133 | 140 | 128 |
| Rice protein concentrate       | 78 | 200 | 116 | 94  | 94  | 113 | 57              | 119 | 128 | 144 | 104 | 100 |

Ingredient scores calculated against the estimated EAA dietary requirement profile of White shrimp expressed as % total amino acids: Arg 9.70%, Cys 1.03%, Met 2.13%, Thr 4.0%, Iso 4.13%, Leu 7.13%, Lys 5.35%, Val 4.57%, Tyr 4.13%, Tryp 0.91%, Phe 4.97%, His 2.16% & Tau 0.75%; Source: Tacon et al. (2002) – Aquaculture Nutrition 8:121-137).

Essential amino acids

| Arg Cys Met Thr | ľ |
|-----------------|---|
|-----------------|---|

lso L

Leu I.

Val Tyr

Lys

Phe His Try

**Oilseed protein products** Methionine: 47-137, Lysine: 49-119, Threonine: 73-124, Histidine: 86-149

| 1                                  |                 |                  |                  |                 |                  | _               |                 |                  | _               |                  | _                |                  |
|------------------------------------|-----------------|------------------|------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|------------------|------------------|------------------|
| Canola meal, solvent extracted     | 66              | 195              | 199              | 115             | 102              | 103             | 116             | 115              | 69              | 144              | 89               | 149              |
| Canola protein concentrate         | 71              | <b>219</b>       | 104              | 110             | 100              | 111             | 113             | 113              | <mark>69</mark> | <mark>149</mark> | <mark>85</mark>  | 123              |
| Rapeseed meal, mech. extracted     | 66              | 102              | 104              | 124             | 109              | 110             | 102             | 127              | 67              | 160              | 92               | 137              |
| Rapeseed meal, solv. extracted     | 67              | 112              | <b>101</b>       | 123             | 103              | 110             | 119             | 123              | 60              | 149              | 89               | 142              |
| Coconut kernel (endosperm) dry     | 138             | 112              | 92               | 84              | 97               | 95              | 66              | 120              | 66              | <mark>116</mark> | <mark>92</mark>  | <mark>98</mark>  |
| Copra meal, mech. extracted        | 131             | 136              | 82               | 89              | 107              | 103             | <mark>60</mark> | 121              | 67              | 116              | 91               | 88               |
| Copra meal, solv.extracted         | 130             | 127              | <mark>78</mark>  | 87              | <u>10</u> 6      | 106             | <mark>59</mark> | 120              | 73              | 116              | 91               | 93               |
| Cotton seed (kernel), whole        | 122             | <b>156</b>       | <mark>64</mark>  | 87              | <mark>84</mark>  | <mark>87</mark> | <mark>86</mark> | <mark>106</mark> | <mark>74</mark> | <mark>144</mark> | <b>110</b>       | <mark>132</mark> |
| Cottonseed meal, mech.extract.     | 113             | 185              | 71               | 88              | 92               | 88              | <mark>79</mark> | 115              | 67              | 155              | 114              | 126              |
| Cottonseed meal, solv.extract.     | 118             | 176              | 71               | 85              | 89               | 82              | <mark>89</mark> | 109              | 61              | 149              | 121              | 128              |
| Cottonseed meal (dehul solv. ext)  | 118             | 239              | <mark>85</mark>  | 98              | 88               | 76              | <mark>75</mark> | 112              | <b>46</b>       | <b>160</b>       | 125              | 132              |
| Linseed/flax (kernel)              | <b>103</b>      | <b>195</b>       | 97               | <mark>99</mark> | <b>109</b>       | <mark>89</mark> | 74              | <mark>123</mark> | <mark>69</mark> | <mark>177</mark> | 101              | <mark>100</mark> |
| Linseed meal, mech.extracted       | 98              | 180              | 87               | 97              | 135              | 91              | <mark>73</mark> | 120              | 73              | 188              | 95               | 98               |
| Linseed meal, solv.extracted       | 96              | 185              | <mark>78</mark>  | 98              | 134              | 91              | <mark>68</mark> | 120              | 85              | 177              | 95               | 102              |
| Oil palm seed (kernel)             | 143             | <b>176</b>       | 113              | <mark>81</mark> | 87               | 87              | 67              | <b>123</b>       | <mark>67</mark> | 105              | 77               | 100              |
|                                    | 143             | 161              | <mark>92</mark>  | 89              | 91               | 98              | <mark>59</mark> | 105              | 67              | 127              | 93               | 86               |
| Peanut meal, mechan.extracted      | 123             | 171              | <mark>54</mark>  | 73              | 96               | 99              | <mark>66</mark> | 106              | 95              | 121              | 110              | 116              |
| Peanut meal, solvent extracted     | 121             | 151              | 47               | 79              | 101              | 98              | 75              | 100              | 98              | 121              | 105              | 119              |
| Sesame seed (kernel)               | 127             | 180              | <mark>134</mark> | 90              | 89               | 96              | 52              | 102              | 78              | 149              | 91               | 114              |
| Sesame oilcake, mech. extract.     | <u>11</u> 6     | 176              | <mark>137</mark> | 90              | 98               | 97              | 49              | 105              | 92              | 149              | 92               | 112              |
| Soybean seed, heat processed       | 74              | <mark>122</mark> | 64               | 105             | <mark>126</mark> | <mark>99</mark> | 116             | <mark>116</mark> | <mark>76</mark> | <mark>149</mark> | <mark>105</mark> | <mark>116</mark> |
| Soybean meal, undec.mech.extr.     | 70              | 122              | 66               | 94              | 142              | 113             | 113             | 109              | 83              | 149              | 96               | 114              |
| Soybean meal, undec.solv.extr.     | 79              | 161              | <mark>61</mark>  | 98              | 115              | 106             | 119             | 105              | 79              | 160              | 98               | 121              |
| Soybean meal, dehulled,solv.extr.  | 77              | 146              | <mark>66</mark>  | 97              | 113              | 105             | 118             | 112              | 85              | 149              | 101              | 114              |
| Soybean protein concentrate        | <mark>79</mark> | 132              | 68               | <mark>99</mark> | 117              | <b>104</b>      |                 | <mark>109</mark> | <mark>84</mark> | <mark>133</mark> | <b>100</b>       | 123              |
| Sunflower seed (k ernel) withhulls | 93              | 161              | 99               | 104             | 118              | 101             | 77              | 124              | 51              | 166              | 101              | 123              |
| Sunflower seed, decor. mech.extr   |                 | 100              | 420              | 02              | 1 20             | 04              |                 | 110              | 6/              | 1/0              | 101              | 116              |
|                                    | <mark>97</mark> | <mark>180</mark> | 130              | <mark>93</mark> | 120              | <mark>91</mark> | 80              | <mark>119</mark> | <mark>64</mark> | <mark>149</mark> |                  |                  |
| Sunflower seed, decor. solv.extr.  | 97<br>92        | 156              | 1150<br>115      | 98<br>98        | 115              | 102             | <mark>75</mark> | 125              | 64              | 144              | 101              | 114              |

| Essential amino acids | <mark>Arg</mark> | Cys | Met | Thr | lso | Leu | <mark>Lys</mark> | Val | Tyr | Try | Phe | <mark>His</mark> |
|-----------------------|------------------|-----|-----|-----|-----|-----|------------------|-----|-----|-----|-----|------------------|
|                       |                  |     |     |     |     |     |                  |     |     |     |     |                  |

Pulse/grain legume products Methionine: 28-82, Lysine 105-162, Threonine 81-122, Histidine 119-195

| Pigeon pea              | 56                    | 102                   | <mark>28</mark> | 81  | 85  | 100 | <mark>162</mark> | 88  | 55                    | 72  | 188 | 195        |
|-------------------------|-----------------------|-----------------------|-----------------|-----|-----|-----|------------------|-----|-----------------------|-----|-----|------------|
| Jack bean               | 53                    | 127                   | <mark>68</mark> | 122 | 107 | 112 | <b>113</b>       | 111 | 93                    | 144 | 114 | 137        |
| Chickpea                | 96                    | 112                   | 47              | 93  | 106 | 104 | 127              | 98  | 70                    | 94  | 113 | 121        |
| Egyptian bean           | 70                    | 97                    | 28              | 89  | 107 | 120 | 142              | 111 | 83                    | 83  | 104 | 149        |
| Lentil                  | 88                    | 88                    | 35              | 98  | 103 | 106 | <b>133</b>       | 109 | 78                    | 105 | 104 | 126        |
| Lupin                   | 104                   | 141                   | 38              | 98  | 113 | 108 | 105              | 94  | 91                    | 116 | 98  | 128        |
| African locust bean     | 71                    | 127                   | <mark>49</mark> | 87  | 106 | 106 | <b>133</b>       | 114 | 96                    | 110 | 105 | 137        |
| Lima bean               | 59                    | 97                    | <mark>59</mark> | 102 | 117 | 111 | <mark>136</mark> | 109 | 76                    | 110 | 118 | 142        |
| Kidney bean             | 62                    | 97                    | <mark>54</mark> | 107 | 109 | 114 | <mark>144</mark> | 108 | 66                    | 121 | 112 | 142        |
| Pea/field pea           | 74                    | 88                    | <mark>52</mark> | 103 | 115 | 107 | 123              | 114 | 84                    | 99  | 105 | 126        |
| Pea protein concentrate | 97                    | 117                   | <mark>38</mark> | 90  | 102 | 38  | <mark>137</mark> | 101 | 75                    | 105 | 101 | 119        |
| Urd                     | 59                    | 73                    | <mark>26</mark> | 87  | 198 | 103 | <b>157</b>       | 93  | 63                    | 88  | 102 | 139        |
| Broad bean              | 96                    | 68                    | <mark>45</mark> | 99  | 104 | 103 | <b>127</b>       | 111 | 89                    | 110 | 90  | 121        |
| Cowpea                  | 71                    | 112                   | <mark>59</mark> | 97  | 100 | 106 | <b>138</b>       | 107 | 68                    | 127 | 112 | 163        |
| Bambarra groundnut      | <mark>66</mark><br>66 | <mark>97</mark><br>93 | 82              | 88  | 107 | 111 | 122              | 117 | <mark>85</mark><br>84 | 121 | 114 | <b>139</b> |
| Ground bean             | 66                    | 93                    | <mark>66</mark> | 95  | 108 | 106 | <mark>123</mark> | 136 | 84                    | 83  | 115 | 128        |

Ingredient scores calculated against the estimated EAA dietary requirement profile of White shrimp expressed as % total amino acids: Arg 9.70%, Cys 1.03%, Met 2.13%, Thr 4.0%, Iso 4.13%, Leu 7.13%, Lys 5.35%, Val 4.57%, Tyr 4.13%, Tryp 0.91%, Phe 4.97%, His 2.16% & Tau 0.75%; Source: Tacon et al. (2002) – Aquaculture Nutrition 8:121-137).

| Essential amino acids |
|-----------------------|
|                       |
|                       |

Arg Cys

Met Thr Iso

Leu Lys

ys <mark>Val</mark>

Tyr Try

Phe His

| Single cell proteins              |          |                 |                  |     |     |     |                  |     |                       |     |     |     |
|-----------------------------------|----------|-----------------|------------------|-----|-----|-----|------------------|-----|-----------------------|-----|-----|-----|
| Pseudomonas/Methylophilus sp      | 55       | 58              | <mark>120</mark> | 120 | 118 | 111 | <mark>117</mark> | 133 | 95                    | 127 | 90  | 102 |
| Mixed bacterial SCP               | 73<br>53 | <mark>68</mark> | 130              | 113 | 108 | 110 | 106              | 127 | <mark>86</mark><br>85 | 149 | 84  | 102 |
| Brewers yeast (S. cerevisiae)     | 53       | 122             | 82               | 127 | 121 | 102 | 137              | 123 | 85                    | 144 | 85  | 121 |
| Extracted yeast (S. cerevisiae)   | 48       | 122             | 85               | 118 | 114 | 123 | 124              | 131 | 87                    | 133 | 91  | 109 |
| Torula yeast (T. utilis)          | 51       | 112             | 68               | 124 | 131 | 94  | <b>133</b>       | 122 | 92                    | 105 | 110 | 119 |
| Candida spp. (alkane substrate)   | 44       | 112             | 97               | 137 | 124 | 113 | 126              | 125 | 93                    | 155 | 86  | 95  |
| Aspergillus oryzae (waste starch) | 58       | 98              | 58               | 117 | 111 | 106 | 108              | 122 | 154                   | 160 | 72  | 114 |
| Rhodotorula pilimanae             | 78       | 24              | 118              | 134 | 103 | 99  | <b>163</b>       | 118 | 66                    | 33  | 69  | 123 |
| Spirulina maxima                  | 68       | 54              | 82               | 115 | 145 | 115 | 86               | 135 | 103                   | 155 | 88  | 77  |
| Activated bacterial SCP (brewery) | 55       | 78              | 99               | 117 | 123 | 106 | 121              | 115 | 102                   | 160 | 99  | 100 |
| Fermamino bacterial SCP           | 62       | 72              | <mark>110</mark> | 465 | 113 | 104 | <mark>101</mark> | 132 | 81                    | 81  | 79  | 171 |

Ingredient scores calculated against the estimated EAA dietary requirement profile of White shrimp expressed as % total amino acids: Arg 9.70%, Cys 1.03%, Met 2.13%, Thr 4.0%, Iso 4.13%, Leu 7.13%, Lys 5.35%, Val 4.57%, Tyr 4.13%, Tryp 0.91%, Phe 4.97%, His 2.16% & Tau 0.75%; Source: Tacon et al. (2002) – Aquaculture Nutrition 8:121-137).

| Thailand  | CP    | MET  | CYS  | M+C  | LYS  | THR  |
|-----------|-------|------|------|------|------|------|
| Average   | 35.82 | 0.77 | 0.48 | 1.25 | 1.96 | 1.32 |
| Min       | 30.71 | 0.52 | 0.40 | 0.97 | 1.72 | 1.15 |
| Max       | 41.05 | 1.61 | 0.58 | 2.18 | 2.33 | 1.58 |
| Stdev     | 2.83  | 0.27 | 0.06 | 0.30 | 0.15 | 0.11 |
| Malaysia  |       |      |      |      |      |      |
| Average   | 40.43 | 0.82 | 0.59 | 1.41 | 2.25 | 1.49 |
| Min       | 40.06 | 0.81 | 0.59 | 1.41 | 2.09 | 1.48 |
| Max       | 40.80 | 0.82 | 0.60 | 1.41 | 2.40 | 1.50 |
| Stdev     | 0.52  | 0.01 | 0.00 | 0.00 | 0.22 | 0.01 |
| Vietnam   |       |      |      |      |      |      |
| Average   | 40.99 | 0.77 | 0.48 | 1.25 | 2.31 | 1.48 |
| Min       | 40.64 | 0.72 | 0.46 | 1.20 | 2.19 | 1.45 |
| Max       | 41.90 | 0.81 | 0.47 | 1.27 | 2.34 | 1.49 |
| Stdev     | 0.52  | 0.04 | 0.00 | 0.03 | 0.07 | 0.02 |
| India     |       |      |      |      |      |      |
| Average   | 35.28 | 0.61 | 0.43 | 1.04 | 2.00 | 1.31 |
| Min       | 32.08 | 0.47 | 0.39 | 0.88 | 1.71 | 1.16 |
| Max       | 39.42 | 0.81 | 0.50 | 1.21 | 2.37 | 1.46 |
| Stdev     | 2.01  | 0.09 | 0.03 | 0.10 | 0.20 | 0.09 |
| Indonesia | a     |      |      |      |      |      |
| Average   | 34.92 | 0.63 | 0.51 | 1.14 | 1.89 | 1.27 |
| Min       | 30.65 | 0.49 | 0.42 | 0.98 | 1.51 | 1.12 |
| Max       | 37.98 | 0.81 | 0.60 | 1.28 | 2.30 | 1.42 |
| Stdev     | 3.04  | 0.12 | 0.08 | 0.12 | 0.32 | 0.13 |

Observed variations in key EAA within commercial shrimp feeds in selected Asian Countries

Total levels not available levels

### **SHRIMP NUTRITION & FEEDING**

#### A SELECTED ANNOTATED BIBLIOGRAPY

1971 - 2014

compiled by

### Albert G.J. Tacon, Thiago Raggi & Daniel Lemos

Laboratório de Aquicultura Instituto Oceanográfico Universidade de São Paulo São Paulo, Brasil

for

The CNPq Research Project

Feeding Tomorrow's Fish: Environmental and Economically Sustainable Aquafeeds and Feeding Regimes for Marine Aquaculture

#### AquaMar

#### São Paulo, April 2014



### SUBJECT INDEX

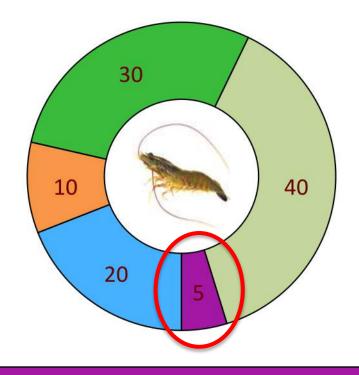
### 789 pages, excluding index

- 1. Attractants & feeding stimulants
- 2. Binders & feed stability
- Biofloc & zero-exchange culture systems
- Broodstock feeds & feeding
- 5. Carbohydrates & dietary fiber
- 6. Carotenoids & pigmentation
- Contaminants & dietary disease risks
- 8. Digestion & digestibility
- 9. Disease resistance & immune response
- 10. Economics of feeds & feeding
- 11. Energy, growth & general physiology
- 12. Environmental impacts & life cycle analysis
- 13. Experimental methodology & feeding trials
- 14. Feed ingredients & formulated feeds
- 15. Feed manufacture, processing & storage
- 16. Feeding behavior & feeding regime
- 17. Growth promotants & miscellaneous feed additives
- 18. Gut microflora & microbiology
- 19. Larval & nursery feeds
- 20. Lipids, fatty acids & metabolites
- 21. Minerals & trace elements
- 22. Moulting & exoskeleton
- 23. Mycotoxins
- 24. Natural foods & feeding habits
- 25. Organoleptic & gastronomic characteristics
- 26. Prebiotics & probiotics
- 27. Production systems & bioremediation
- Proteins, amino acids & metabolites
- 29. Reviews on shrimp nutrition
- 30. Vitamins & antioxidants
- 31. Water quality, fertilization & soils

166 refs 30 C J Refs Huang, K., Wang, W., & Li, C. (2003). Requirement of essential amino acids for *Penaeus* vannamei. Journal of Fisheries of China/Shuichan Xuebao, 27(5), 456-461.

Feeding experiments were conducted with protein diets (PD) and protein-free diets (FPD) for juvenile Penaeus vannamei (average body weights, 0.2627-0.2715 g). The diets (PD) are prepared by casein and gelatin as protein source with high biological values. The requirements of juvenile *Penaeus vannamei* for essential amino acids (EAA) were determined based on the daily deposition and changes of each EAA in shrimp body.




| Aquatic protein meals & oils       | 5-20% |  |
|------------------------------------|-------|--|
| Fishmeals & oil: wild & farmed     | 5-20  |  |
| Squid meal, krill meal             | 2-10  |  |
| Seaweed meals & products           | 1-5   |  |
| Cultured microbial biomass         | 1-5   |  |
| Terrestrial animal proteins & oils | 5-10% |  |
| ierrestriar animal proteins & ons  | 5-10% |  |
| Poultry by-products                | 5-10  |  |

| Poultry by-products       | 2-10 |
|---------------------------|------|
| Porcine by-products       | 2-5  |
| Ruminant by-products      | 2-5  |
| Terrestrial invertebrates | 1-5  |

| Terrestrial plant proteins & oils | 10-30% |  |
|-----------------------------------|--------|--|
| Oilseed protein by-products       | 10-30  |  |
| Cereal protein by-products        | 5-15   |  |
| Pulse protein by-products         | 5-15   |  |
| Other plant proteins              | 5-15   |  |
|                                   |        |  |

| Other plant meals & fillers | 25-40% |  |
|-----------------------------|--------|--|
| Cereal meals & by-products  | 15-50  |  |
| Root meals & extracts       | 2-10   |  |
| Fruit meals & by-products   | 1-5    |  |
| Forage & leaf meals         | 1-5    |  |

### Ingredients commonly used in feeds for PENAEID SHRIMP SPECIES



#### **Feed additives**

### 0-5%

Vitamins, antioxidants, emulsifiers & pigments

### Minerals, trace elements, salt

Amino acids, nucleotides, feeding attractants, enzymes

Gut modifiers, prebiotics, probiotics, acidifiers

Immune enhancers, anti-fungal, anti-viral, anti-parasitical

Binders, growth promoters, hormones, antibiotics



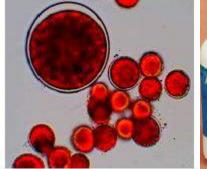
## **Feed Additives**

these are usually mixed with the diet when it is manufactured



Vitamins, pigments, antioxidants & emulsifiers

Minerals, trace elements, salt, limestone, zeolite


Amino acids, nucleotides, feeding attractants

**Enzymes**, jut modifiers, prebiotics, probiotics, acidifiers

Immune enhancers anti-fungal, anti-viral, anti-parasitical

Binders, growth promoters, hormones, antibiotics







# AQUAVI® Met-Met: the second generation methionine source for crustaceans





Amino acids and more.

### AQUAVI® Met-Met

is the first **dipeptide** designed for the crustaceans' industry.

Minimized leaching and optimized nutrients' syncronicity: - a new era in the aqua feed industry.



## Improving the utilization of feed ingredients

Use of renewable nutrient sources



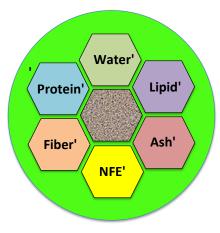


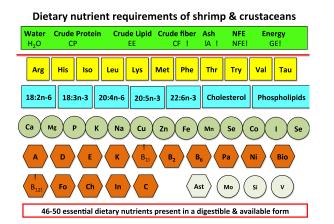


## **EXOGENOUS ENZYMES**

- Releasing nutrient trapped in complex biopolymers
- Breakdown of anti-nutrients
- Reducing residues from farming operations (environment)
- Assisting in gut health
- Improving feed consistency

Phytase Xylanase


β – glucanaseCellulase


Amylase Protease Lipase Micotoxinase Mannanase α - galactosidase

## **Recent developments in shrimp feeds & feeding**



- Improved labeling & reporting of nutrient levels within feed ingredients & shrimp feeds
- Improved feed formulation & reduced use of wild fish in shrimp feeds
- Improved on-farm feed management practices tailored to the needs of small-scale shrimp farmers









- **3** Development of improved on-farm feed management practices tailored to individual farm conditions & the needs of small-scale shrimp farmers through;
- the use of improved feed transportation & storage techniques;
- the use of improved record keeping & financial control;
- the use of improved on-farm feed & water management, including natural food production & control.



Maximizing Agricultural Revenue through Knowledge, Enterprise Development, and Trade Project

# TRAINING WORKSHOP ON THE PROMOTION OF IMPROVED ON-FARM SHRIMP FEED MANAGEMENT PRACTICES

NATURAL FOOD AVAILABIITY

SHRIMP STOCKING DENSITY

COMPLETE DIET FEEDING



## USAID – MARKET: Project & Background

The Maximizing Agricultural Revenue through Knowledge, Enterprise Development and Trade Project

Promotes more sustainable and efficient use of aquaculture & fishery resources in ASEAN region

The three and half year project began in late 2011, is implemented by Nathan Associates Inc. in partnership with ASEAN, and is part of The US Feed the Future Global

Hunger & Food Security Initiative



ASEAN-U.S. Maximizing Agricultural Revenue through Knowledge, Enterprise Development, and Trade (MARKET) Project







**Long-term objective of USAID – MARKET Project:** 

- Improved practices adopted by small-holder producers in the aquaculture & fishery industry in the ASEAN region.
- Increased public-private coordination & partnerships addressing key sustainable aquaculture & fishery sector issues in the ASEAN region.
- Improved policy & regulatory environment for sustainable & inclusive aquatic resources management within ASEAN.

### **SMALL-SCALE FARMERS – the weakest link**

• Need for the resident feed industry, government extension services, & farmer associations to closely monitor & support small-scale farmers, which currently represents the weakest link within most ASEAN countries, and the sector most vulnerable to the possible use of unsustainable farming practices & potential disease risks;

• Estimated that up to 80% of Asia's aquaculture farms are smallscale operations that contribute significantly to development of rural livelihoods. Disease outbreaks, poor production practices and market pressures threaten the livelihoods of local operators. In ASEAN, public sector extension services exist, yet rarely focus or target the typical farmer smallholder, particularly in aquaculture'.

## March 5, 2015

## United States: Washington DC—FDA Crackdown on Imported Shrimp with Antibiotics

New data released by the USA Food and Drug Administration (FDA) indicates that of the 114 seafood shipments (called "entry lines" in FDA's reports) were refused in January 2015, 24 were of imported shrimp with veterinary drug residues.

The FDA's report for February continues to provide evidence of a crackdown on shrimp imports contaminated with banned antibiotics. The report also demonstrates that problems with banned antibiotics in shrimp aquaculture have been limited to a small number of countries. In particular, of the 1,025 shipments of shrimp refused for reasons related to veterinary drug residues since 2002, over 90% (928) were shipped from just five countries: China, Malaysia, Vietnam, India & Indonesia.

Source:

https://www.shrimpnews.com/FreeReportsFolder/NewsReportsFolder/USAdcFDAcrackdownOnAntibiotics.html



### **PROJECT TRAINING APPROACH & IMPLEMENTATION**

Focus: as recommended by the 2<sup>nd</sup> Taskforce meeting, training should be needs driven, and based on the perceived needs of the shrimp farm surveys conducted by the Project in May 2014 in Indonesia (Banyuwangi area), Thailand (Khon Kean area) & Vietnam (Soc Trang/Ca Mau area) – focus on small-scale shrimp farmers



Feed Management Practices







**Feed Management Practices** 



**Survey Analysis** 



g



## **PROJECT TRAINING APPROACH & IMPLEMENTATION**

Common gaps & needs identified from the three shrimp farm surveys conducted were as follows:

- Knowledge & understanding on feed costs & record keeping

- Knowledge on feed characteristics: water stability, proximate composition & nutrient content, labeling, shelf life etc

- Knowledge & understanding on the use of feed additives
- Knowledge on optimum feeding time & feeding methods
- Knowledge on monitoring feed efficiency & shrimp performance
- Knowledge & use of suitable environmental monitoring methods
- Knowledge on disease identification & prevention methods



### TRAINING PROGRAM APPROACH

Trainer Training workshops (TOT): Two-day TOTs to be held in Indonesia, Thailand and Vietnam for 20-25 trainers per country, with 1<sup>st</sup> day dedicated to lectures, and the day dedicated to shrimp farm visits and a group discussion of observed on-farm feed management practices with simultaneous translation

Farmer Training workshops: Farmer training workshops to be held in Indonesia, Philippines, Thailand & Vietnam for 50-100 farmers over a half to one day period in local language by selected trainers from the TOT program, and based on relevant materials presented during the TOT but adjusted to local farmer needs & conditions, aimed at assisting small-scale farmers how to improve and optimize their on-farm feed management practices

**Special Regional Training workshop:** Tailored more to the needs of the shrimp feed manufacturing sector within the region, and also to present the project results and findings, and discuss potential project follow-up activities



HỌI NGHẢ TÁ VIỆT NAM TRUNG TÂM HỢP TÁC QUỐC TẾ NUÔI TRÔNG VÀ KHAI THÁC THỦY SẢN BÊN VỮNG

### TOT TRAINING/TẠP HUÂN GIẢNG VIÊN

THE PROMOTION OF IMPROVED ON-FARM SHRIMP FEEL MANAGEMENT PRACTICES

> THỨC ĐÁY CẢI THIỆN THỰC HÀNH QUÂN LÝ CHO ĂN TRONG AO NUÔI TÔM

> > 15 -16:01.2015 TP. Soc Trang, Việt Nam

Our an toi da hoa loi nhuan nganh no it triển kinh doanh và thương mại củ to chực họi thao và tài liêu si bong cán thiết phải phố liệp thông qua nàng cao kiến thực tuận phật triển quốc tế Hoa Ky US thorthao: Quan điệm thể hiện là của USAID hoặc Ch

# Workshop Approach – so facilitating active participation & discussion

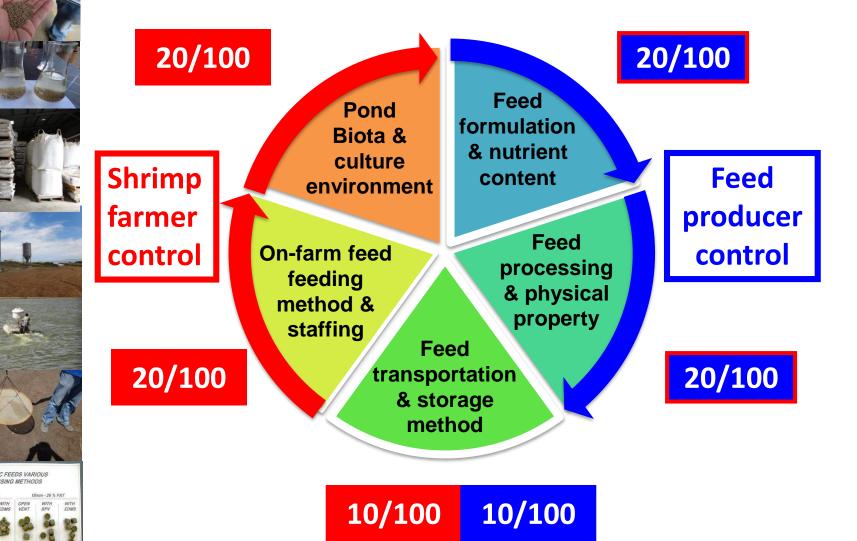


The overall objective of the training is to help small-scale shrimp farmers within the region with the adoption of `Improved On-Farm Feed Management Practices', through

- The use of improved record keeping & understanding of shrimp feed & feeding costs,
- The use of improved feed transportation and on-farm feed storage methods,
- The use of improved on-farm shrimp feeding methods tailored to farmer needs and financial resources,
- The promotion of improved technical support by feed companies to meet small-scale shrimp farmer needs concerning on-farm feed management,
- The promotion of increased public-private partnerships addressing the special needs of small-scale shrimp farmers in the region






**Need for definition:** 

## **On-farm Feed Management**

## " covers all those activities conducted by the farmer & his or her staff concerning the handling, storage & use of shrimp feed on the farm "



## **Training approach**





## **Trainer of Trainer TOT workshop schedule**



### Day 1:

- Objective of the workshop & introduction of participants (8)
- Main factors affecting feed performance & importance of feed management (41)
- Knowing your feed costs & importance of good record keeping (32)
- Feed types, feed labels & importance of national feed legislation (46)
- Feed transportation & on-farm feed storage: do's and dont's (53)
- Feed additives, top dressing feeds & potential feed biosecurity risks (62)
- Feeding habits, nutrient leaching & importance of natural foods (79)
- Feeding methods, feeding tables & choice of feeding method (167)
- Importance of good pond & water management, including nutrient recycling (92)

### Day 2:

- Shrimp farm visits (2-3)
- Group discussion on observed on-farm shrimp feed management practices
- Group discussion on training needs of small-scale farmers, including follow-up
- Closing & presentation of TOT training certificates/thumb drive with presentations



Maximizing Agricultural Revenue through Knowledge, Enterprise Development, and Trade Project

|                                          | rainer Training workshops (TOT)                                                                                                                                                                                         |                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Date of TOT:                             | January 15-16, 2015                                                                                                                                                                                                     |                                   |
| Venue of TOT:                            | Ngoc Suong Hotel, Soc Trang, Vietnam                                                                                                                                                                                    |                                   |
| Local MARKET support staff/consultants:  | Mr Lap Dinh Xuan (ICAFIS, Hanoi)<br>Ms Tung Nguyen Thi Thanh (ICAFIS, Hanoi)<br>Ms Thuy Cu Thi Le (MARKET staff, Hanoi)<br>Dr Jesper Hedegaard (MARKET consultant, Bangkok)<br>Dr Albert Tacon (MARKET consultant, USA) |                                   |
| Translator:                              | Dr. Nguyen Nhu Tri (Nong Lam University, HCMC)                                                                                                                                                                          |                                   |
| Participants + MARKET staff/consultants: | Total participants + others                                                                                                                                                                                             | 35 + 5                            |
|                                          | Shrimp farmers/representatives<br>Government/extension staff<br>University staff, including translator<br>Feed company representatives<br>NGOs (WWF, Can Tho)<br>ICAFIS staff<br>MARKET staff/consultants               | 13<br>10<br>6<br>4<br>2<br>2<br>3 |
| Farm visit/s:                            | My Thanh Shrimp Association shrimp farm                                                                                                                                                                                 | m/s, Soc Trang                    |





### VIETNAM TOT

## Dr Nguyen Nhu The

MANAGAN

11-

TOT TRAINING/TAP HUAN GIANG VIÊN

PEED

AW/

**MANNAL AND** 

LIAM CANDIDANNA AAAAA



TOT TRAINING/TAP HUAN GIANG VIÊN THE PROMOTION OF IMPROMED ON FARM SHRIMP FEED MANAGEMENT PRACTICES

THUG DAY GAI THIEN THUC HANH QUAN LY CHO AN TRONG AO NUOLTON 15 16:01 2015

TOT TRAINING/TAP HUAN GIANG VIÊN THE PROMOTION OF IMPROVED ON FARM SHRIMP FEED THUC DAY CAI THIRD THUSE HADRI QUALI 1.9

HO AN TRONG AG MUG



Card

THE PROMOTION OF MERONED CARARA SHRIMP FEED. MANAGEMENT FLACTORS HUS HAY GAT YOURN YOU





## NATIONAL FARMER TRAINING - VIETNAM



Three national training workshops held on 6th February in Soc Trang, Bac Lieu and Ben Tre by three different extension workers from extension centers of those three provinces, namely:

- Mr. Vo Van Be Extension Center of Soc Trang Province, will conduct the training in Soc Trang: **35 farmers trained**
- Mr. Huynh Quoc Khoi Extension Center of Bac Lieu Province, will conduct the training in Bac Lieu: 35 farmers trained
- Mr. Chau Huu Tri Extension Center of Ben Tre Province, will conduct the training in Ben Tre: **36 farmers trained**

Total farmers trained to date: 106 farmers





Maximizing Agricultural Revenue through Knowledge, Enterprise Development, and Trade Project

| INDONESIA:                               | Triner Training workshops (TOT)                                                                                                                                                                            |                             |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Date of TOT:                             | January 21-22, 2015                                                                                                                                                                                        |                             |
| Venue of TOT:                            | Ketapang Indah Hotel, Banyuwangi, Indonesia                                                                                                                                                                |                             |
| Local MARKET support staff/consultants:  | Dr Agus Suprayudi (MARKET feed consultant, Bogor)<br>Ms Linny Ayunahati (MARKET staff, Jakarta)<br>Ms Bellatrix Bogar (MARKET staff, Jakarta)<br>Dr Albert Tacon (MARKET consultant, USA)                  |                             |
| Translator:                              | Dr. Julie Ekasari (Bogor Agricultural University, Bogor)                                                                                                                                                   |                             |
| Participants + MARKET staff/consultants: | Total participants + others                                                                                                                                                                                | 27 + 4                      |
|                                          | Shrimp farmers/representatives<br>Government/extension staff<br>University staff, including translator<br>Feed company representatives<br>NGOs (WWF, Jakarta; SFP -Banyuwangi)<br>MARKET staff/consultants | 11<br>7<br>4<br>5<br>2<br>4 |
| Farm visit/s:                            | Hadi Cahyono shrimp farm/s, Banyuwangi                                                                                                                                                                     | i                           |



**INDONESIA TOT** 





**NATIONAL FARMER TRAINING - INDONESIA** 



Four national training workshops have bee held to date in Indonesia, one by TOT trainee Mr Erik Sutikno in Jepara on 27<sup>th</sup> January, and three by Dr Agus Suprayudi in Jogyakarta province on 4 & 5 March 2015

Total farmers trained to date: 165 farmers









USAID

Ma

Bar

Selamat Datang

Pe

jemen Pa

**Yulon Progo**,

## Selamat Datang Peserta Pelatihan Manajemen Pakan Udang Bantul / Kulon Progo, 4 - 5 Maret 2015



**Dr Agus Suprayundi** 

Maximizing Agricultural Revenue through Knowledge, Enterprise Development, and Trade Project

| THAILAND:                                               | Trainer Training workshops (TO                                                                                                                                                                                                                                                                  | )Т)                        |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Date of TOT:                                            | January 27-28, 2015                                                                                                                                                                                                                                                                             |                            |
| Venue of TOT:                                           | Kasetsart University, Bangkok, Thailand                                                                                                                                                                                                                                                         |                            |
| Local MARKET support staff/consultants:                 | Ms Chonnikarn Phochanakij (Kenan Institute Asia)<br>Ms Veena Cute-ngarmpring, Kenan Institute Asia)<br>Mr Timothy Moore (MARKET staff, Jakarta)<br>Ms Gladys Villacorta (MARKET staff, Jakarta)<br>Dr Jesper Hedegaard (MARKET consultant, Bangkok)<br>Dr Albert Tacon (MARKET consultant, USA) |                            |
|                                                         | Dr. Soranuth Sirisuay (Kasetsart University, Bangkok)                                                                                                                                                                                                                                           |                            |
| Translator:                                             | Dr. Soranuth Sirisuay <mark>(</mark> Kasetsart Univers                                                                                                                                                                                                                                          | ity, Bangkok)              |
| Translator:<br>Participants + MARKET staff/consultants: |                                                                                                                                                                                                                                                                                                 | ity, Bangkok)<br>33 + 6    |
|                                                         |                                                                                                                                                                                                                                                                                                 |                            |
|                                                         | Total participants + others                                                                                                                                                                                                                                                                     | 33 + 6                     |
|                                                         | Total participants + others<br>Shrimp farmers/representatives                                                                                                                                                                                                                                   | 33 + 6<br>8                |
|                                                         | Total participants + others<br>Shrimp farmers/representatives<br>Government/extension staff                                                                                                                                                                                                     | 33 + 6<br>8<br>7           |
|                                                         | Total participants + others<br>Shrimp farmers/representatives<br>Government/extension staff<br>Feed company representatives<br>Observers<br>University staff, including translator                                                                                                              | 33 + 6<br>8<br>7<br>7      |
|                                                         | Total participants + others<br>Shrimp farmers/representatives<br>Government/extension staff<br>Feed company representatives<br>Observers                                                                                                                                                        | 33 + 6<br>8<br>7<br>7<br>6 |

USAID

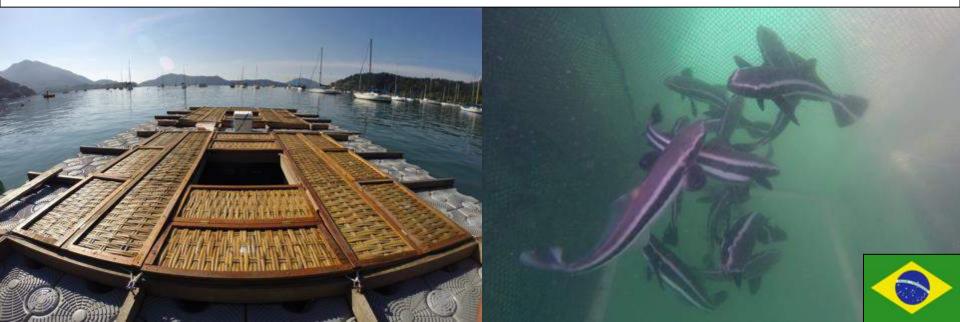
FROM THE AMERICAN PEOPLE

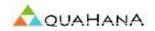




THAILAND TOT








The importance of applied nutrition research in securing the future & long term sustainability of the aquaculture sector

USI





....

## A'ohe hana nui ka alu'ia No task is too big when done together

## Thank you

http://www.aquahana.com