CULTIVO DE JUVENIS DE TAINHA Mugil sp ALIMENTADAS COM DIFERENTES DIETAS

Rafael Lustosa Maciel¹, Thales da Silva Moreira^{2*}, Pedro Henrique Gomes³, Ana Luzia Assunção Claúdio de Araújo³ e Wladimir Ronald Lobo Farias³

As tainhas (*Mugil sp*) são peixes que habitam as zonas costeiras de todo o litoral brasileiro sendo um recurso pesqueiro de grande importância, estando entre as onze espécies mais capturadas no país, é um peixe responsável pelo aumento na renda dos pescadores artesanais, além de ser uma fonte de proteína a mais para a alimentação de suas famílias (REIS et al., 1994; MPA, 2012),. O objetivo desse trabalho foi analisar o desempenho zootécnico de juvenis de tainha alimentados com diferentes dietas cultivadas em salinidade de 20‰

Os juvenis de tainha usados para a realização desta pesquisa foram capturados na foz do rio Siupé no município de Paracuru, os peixes foram distribuídos no total 16 caixas de polietileno pretas divididas em três tratamentos e um grupo controle, com quarto repetições cada. No grupo controle (C) os peixes eram alimentados somente com ração comercial peletizada com teor de proteína de 28%, no tratamento 1 (T1) com ração, a microalga *Phaeodactylum tricornutum* e o rotífero *Brachionus plicatilis*, no tratamento 2 (T2) ração, *Spirulina platensis* e *B. plicatilis* e em (T3) ração, *Nannochloropsis oculata* e *B. plicatilis* onde foram submetidos a quatro refeições diárias ás 8:00, 11:00, 14:00 e 17:00 horas.

Os resultados encontrados para o desempenho zootécnico das tainhas estão expostos na tabela 01.

Tabela 01. Desempenho zootécnico de juvenis de tainha (Mugil sp) alimentados com diferentes dietas durante 60 dias.

	Controle	Tratamento 1	Tratamento 2	Tratamento 3
	(Ração)	P. tricornutum	S. platensis	N. oculata
Wi (g)	$10,02 \pm 2,2$	$11,48 \pm 1,62$	$11,44 \pm 1,58$	$11,68 \pm 2,45$
Wf(g)	$11,24 \pm 2,87$	$15,46 \pm 3,52$	$16,17 \pm 5,28$	$15,25 \pm 2,29$
Biomassa inicial (g)	40,06	45,92	45,77	46,71
Biomassa final (g)	44,98	61,842	64,68	61,01
Lti (mm)	$100,99 \pm 30,29$	$111,07 \pm 87,22$	$107,16 \pm 50,36$	$107,99 \pm 84,09$
Ltf (mm)	$109,24 \pm 73,36$	$118,24 \pm 80,84$	$117,49 \pm 99,96$	$118,12 \pm 57,44$
Ganho em massa (g)	4,92	15,92	18,91	14,30
Crescimento total (mm)	33	28,70	41,33	40,50

Não houve diferença estatística significativa entre os tratamentos (p > 0.05).

Embora não tenha sido observada diferença estatística significativa entre os tratamentos, o T 2, no qual os animais consumiram ração e *S. platensis* apresentaram a maior biomassa final, principal índice considerado pelo setor produtivo. Apesar dos tímidos

¹Instituto Centro de Ensino Tecnológico – E.E.E.P José Ivanilton Nocrato e E.E.E.P Alan Pinho Tabosa

²E.E.E.P Flávio Gomes Granjeiro E-mail: thalesparakas@hotmail.com

³Centro de Biotecnologia Aplicada a Aquicultura, Departamento de Engenharia de Pesca da Universidade Federal do Ceará - UFC

resultados relacionados ao crescimento, ainda há muito por se pesquisar na nutrição dessa espécie que possui um grande potencial para a piscicultura marinha brasileira.				